



# Dam Safety Review and Risk Assessment of Youbou Creek Dam

Presented To:

Dated:

Ecora File No.:

March 2019 GK-18-020-CVD

'RD



THIS PAGE IS INTENTIONALLY LEFT BLANK



579 Lawrence Ave, Kelowna, BC V1Y 6L8 | P: 250.469.9757 | F: 250.469.9757 | www.ecora.ca

File No: GK-18-020-CVD | March 2019 | Version 0



Version Control and Revision History

| Version | Date       | Prepared By  | Reviewed By | Notes/Revisions |
|---------|------------|--------------|-------------|-----------------|
| 0       | 2019-03-19 | MJL/AG/CE/BH | AGC         | Issued for Use  |
|         |            |              |             |                 |
|         |            |              |             |                 |

ecora

### **Limitations of Report**

This report and its contents are intended for the sole use of the Cowichan Valley Regional District, their agents and the applicable regulatory authorities. Ecora Engineering & Resource Group Ltd. (Ecora) does not accept any responsibility for the accuracy of any data, analyses, or recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the Cowichan Valley Regional District, their agents, the applicable regulatory authorities or for any Project other than that described in this report. Any such unauthorized use of this report is at the sole risk of the user.

Where Ecora submits both electronic file and hard copy versions of reports, drawings and other projectrelated documents, only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by Ecora shall be deemed to be the original for the Project. Both electronic file and hard copy versions of Ecora's deliverables shall not, under any circumstances, no matter who owns or uses them, be altered by any party except Ecora.

Ecora's General Conditions are provided in Appendix I of this report.



### **Executive Summary**

The Cowichan Valley Regional District (CVRD) engaged Ecora Engineering & Resource Group Ltd. (Ecora) to undertake a comprehensive Dam Safety Review (DSR) and risk assessment of the Youbou Creek Dam located near the community of Youbou, BC on the northern shore of Cowichan Lake.

#### Table iSummary of Key Dam Attributes

|                                      | Youbou Creek Dam                                                |                         |  |
|--------------------------------------|-----------------------------------------------------------------|-------------------------|--|
| Provincial Dam File Number:          | D730170-00                                                      |                         |  |
| Stream Name:                         | Youbou Creek                                                    |                         |  |
| Current Consequences Classification: | Significant                                                     |                         |  |
| Dam Type:                            | Concrete Gravity                                                |                         |  |
| Location:                            | Latitude: 48°52'42" N                                           | Longitude: 124°12'52" W |  |
| Height:                              | 9 m                                                             |                         |  |
| Length:                              | 18.3 m                                                          |                         |  |
| Crest Width:                         | 0.46 m                                                          |                         |  |
| Spillway Capacity:                   | 2.7 m <sup>3</sup> /s                                           |                         |  |
| Live Storage:                        | 460 m <sup>3</sup>                                              |                         |  |
| Potential Storage:                   | 1,770 m <sup>3</sup> /s (without sediment)                      |                         |  |
| Drainage Area:                       | 209 ha                                                          |                         |  |
| Peak of Inflow Design Flood (IDF):   | 34.2 m <sup>3</sup> /s – 42.3 m <sup>3</sup> /s (Significant, 1 | 00-y to 1000-y flood)   |  |
| Peak Outflow During IDF:             | 34.2 m <sup>3</sup> /s – 42.3 m <sup>3</sup> /s (Significant, 1 | 00-y to 1000-y flood)   |  |

The DSR was undertaken in general accordance with the requirements of the BC Water Sustainability Act including all amendments up to BC Reg. 301/2016 (December 7, 2016), the BC Dam Safety Regulation BC Reg. 40/2016 (February 29, 2016), The Association of Professional Engineers and Geoscientists of BC (APEGBC) Professional Practice Guidelines – Legislated Dam Safety Reviews in BC V3.0 (October 2016), and the Canadian Dam Association (CDA) Dam Safety Guidelines (DSG) 2007 (2013 Edition).

The scope of the DSR included the following tasks:

- Background review;
- Site reconnaissance;
- Review of consequences classification;
- Dam assessment, including wall stability and seepage;
- Hydrotechnical analysis including dam break analysis, flood routing and hydraulics;
- Review of any existing Operation, Maintenance & Surveillance Manual, Dam Emergency Plans (Emergency Response Plan and/or Emergency Preparedness Plan), and/or public safety management strategies;
- Risk assessment as per the NDMP framework;
- Assessment of compliance with CDA design criteria; and,
- Development of conclusions and recommendations.

Key outcomes from the engineering analyses are summarized in Table ii below.



| Table ii Summary of Results from Engineering Analyses                                                                                                                                               |        |                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|
| Does the dam meet CDA design criteria?                                                                                                                                                              | Yes/No | Comments        |
| Is the current consequences classification appropriate for this dam in accordance with the BC Dam Safety Regulation BC Reg. 40/2016?                                                                | Yes    | See Section 6   |
| Does the strength and/or characteristics of the dam foundation materials provide sufficient resistance to liquefaction or softening during seismic (cyclic) loading due to application of the EDGM? | Yes    | See Section 8.6 |
| Does the dam meet minimum CDA sliding stability criteria for all loading conditions?                                                                                                                | No     | See Section 8.4 |
| Does the position of the force resultant meet CDA minimum criteria for all loading conditions?                                                                                                      | No     | See Section 8.4 |
| Are tensile stresses (normal, perpendicular) within the limits of CDA acceptance criteria?                                                                                                          | No     | See Section 8.4 |
| Does the dam meet CDA minimum static global stability criteria?                                                                                                                                     | No     | See Section 8.4 |
| Does the dam meet CDA minimum pseudo-static global stability criteria?                                                                                                                              | No     | See Section 8.4 |
| Does the dam meet CDA minimum post-earthquake global stability criteria?                                                                                                                            | No     | See Section 8.4 |
| Do the characteristics of the dam foundation materials provide sufficient resistance to and/or control of seepage to prevent internal erosion?                                                      | Yes    | See Section 8.7 |
| Does the spillway have sufficient capacity to safely pass the inflow design flood (IDF)?                                                                                                            | No     | See Section 9.5 |
| Does the dam meet CDA freeboard requirements including the effects of wind and wave action?                                                                                                         | No     | See Section 9.5 |

Based on the results of the site reconnaissance, analyses and assessment of the dam, a number of observations, conclusions and recommendations were developed as summarized in Table iii below. Priorities (Low, Medium, High or Very High) are given in parentheses. Low, Medium, High and Very High priority recommendations should be addressed within 5, 3, 1 and 0.5 year(s) respectively.

| Task                        | Observations & Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | Recom                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Background Review           | <ul> <li>Limited background information is available for this dam and does not include record drawings for the dam structure.</li> <li>The dam was constructed at some point prior to 1959.</li> <li>No obvious signs of historical or current slope instability of the reservoir side slopes were observed in the review of available photographs.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • | As no record drawings are available for the da embankment, abutments, outlet and spillway chann confirm critical dam elevations and to assist in any t                                                                                                                                                                                                                                                                                                             |
| Site Reconnaissance         | <ul> <li>The reservoir and sedimentation basin were both filled with sediment at the time of the site reconnaissance.</li> <li>Vegetation is currently growing out of the face of the dam.</li> <li>Concrete is showing significant wear on the downstream face.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - | If CVRD would like to continue to use the dam for c<br>be removed from the reservoir to restore the availal                                                                                                                                                                                                                                                                                                                                                        |
| Consequences Classification | <ul> <li>The dam breach inundation mapping indicates that a total area of approximately 1.05 km<sup>2</sup> would be flooded in the event of a dam breach during a 100-year event, potentially impacting Youbou Road and properties downstream.</li> <li>Dam breach analysis and inundation mapping results confirmed that the consequences classification for Youbou Creek Dam should be maintained as "Significant". The CDA guidelines recommend an Inflow Design Flood (IDF) for a "Significant" consequences dam to be between the 100-year and the 1,000-year event.</li> </ul>                                                                                                                                                                                                                                                                                                                               |   | There are no recommendations in this area of the re                                                                                                                                                                                                                                                                                                                                                                                                                |
| Failure Mode Assessment     | <ul> <li>The plausible failure modes of the dam are; overtopping as the spillway may become blocked with debris,<br/>deformation &amp; deterioration due to age and sliding/overturning failure from the design flood or seismic forces.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • | There are no recommendations in this area of the re                                                                                                                                                                                                                                                                                                                                                                                                                |
| Geotechnical Assessment     | <ul> <li>Results of the stability assessment indicate that the dam does not meet CDA structural stability criteria for normal, flood and post-earthquake loading conditions. The earthquake load combination meets or exceeds minimum CDA criteria.</li> <li>The allowable bearing capacity of the foundation is adequate to resist the maximum compressive stress for normal, flood, earthquake and post-earthquake loading conditions.</li> <li>The dam foundation is considered to have a very low susceptibility to liquefaction and post seismic deformation when subject to strong ground motion.</li> <li>The dam foundation is considered to have an extremely low susceptibility to piping failure.</li> <li>The calculated Melton Ratio for Youbou Creek was determined to be 0.6 which indicate that the creek may be susceptible to the formation of debris flows, debris floods and floods.</li> </ul> | • | CVRD should commission a design study to addres<br>to increase its resistance to sliding and overturning<br>the dam. It is envisioned this would result in a reco<br>include the design of a reinforced concrete toe buttu<br>If it is chosen to remediate the existing dam, it is re<br>in vicinity of cold joints are addressed.<br>Remediation or decommissioning of the existing da<br>debris flows as the existing sediment basin and<br>community of Youbou. |
| Hydrotechnical Assessment   | <ul> <li>The peak inflow to Youbou Creek Dam during the IDF associated with the recommended "Siginificant" consequences classification is between 34.2 m3/s (100-year) and the 42.3 m3/s (1,000-year). Because of the absence of significant storage, peak outflows are the same.</li> <li>The spillway does not have adequate capacity to pass the IDF associated with the "Significant" consequences classification.</li> <li>The capacity of the spillway is estimated to be 2.7 m3/s.</li> <li>The flood routing exercise determined that during the IDF event the dam crest will be overtopped. Given that Youbou Creek Dam is a concrete gravity dam, it should be able to resist overtopping without serious damage and given the wear pattern on the dam, it has likely overtopped in the past.</li> </ul>                                                                                                  |   | Extra spillway capacity should be added to the dam<br>strengthened so that the dam would be able to res<br>(High).                                                                                                                                                                                                                                                                                                                                                 |
| Dam Safety Management       | <ul> <li>An Operations, Maintenance and Surveillance Manual and a Dam Emergency Plan need to be prepared for<br/>Youbou Creek.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - | An Operation, Maintenance and Surveillance Mar<br>Youbou Creek Dam (High).<br>The dam should either be decommissioned or rehal                                                                                                                                                                                                                                                                                                                                     |
| Risk Assessment             | <ul> <li>The dam does not meet current CDA requirements in terms of sliding and overturning and thus failure of the dam may occur due to conditions expected over a 30-year period corresponding to an NDMP rating of 1.</li> <li>A preliminary estimate of reconstruction costs as a result of a dam breach is between \$300,000 and \$3 million based on the scope of the infrastructure impacted.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Should the CVRD wish to proceed with a NDMP fun<br>they should undertake a more detailed cost estimat<br>dam breach (High).                                                                                                                                                                                                                                                                                                                                        |

| Table iii | Dam Safety Review of Youbou Creek | Dam — Observations, Conclusions and Recommendations |
|-----------|-----------------------------------|-----------------------------------------------------|
|-----------|-----------------------------------|-----------------------------------------------------|

### **ecora**

#### nmendations

dam structure, a detailed topographical survey of the dam innel should be commissioned to verify existing dam geometry, by future engineering assessments (High).

r drinking water purposes it is recommended that the sediment ilable storage capacity (Low).

review.

review.

Iress the major deficiencies in the Youbou Creek Dam, namely ng to meet CDA stability criteria or alternatively decommission ecommendation to remediate the existing dam that would likely uttress to increase the stability of the gravity wall (Very High). recommended that areas of concrete deterioration particularly

dam should consider the potential impacts of debris floods and nd reservoir provides some mitigation of this hazard to the

am to allow for passage of the IDF event or the dam should be esist forces generated by an overtopping event during the IDF

lanual and a Dam Emergency Plan need to be prepared for

habilitated to meet design loading criteria (High). funding application to remediate or replace Youbou Creek Dam nate of infrastructure that would be impacted in the event of a THIS PAGE IS INTENTIONALLY LEFT BLANK



### **Table of Contents**

| 1. | Intro       | oduction                                 |   |  |  |  |
|----|-------------|------------------------------------------|---|--|--|--|
|    | 1.1         | General                                  | 1 |  |  |  |
|    | 1.2         | Dam Description and Access               | 1 |  |  |  |
|    | 1.3         | Operation, Maintenance and Surveillance  | 2 |  |  |  |
| 2. | Sco         | pe of Work                               | 2 |  |  |  |
|    | 2.1         | Comprehensive Dam Safety Review          |   |  |  |  |
|    | 2.2         |                                          |   |  |  |  |
| 3. | Bac         | kground Review                           |   |  |  |  |
|    | 3.1         | Sources of Information                   |   |  |  |  |
|    | 3.2         |                                          |   |  |  |  |
|    | 3.3         | Historical Aerial Photographs            |   |  |  |  |
|    | 3.4         | Geological Setting                       | 5 |  |  |  |
|    | 3.5         | Seismicity                               | 5 |  |  |  |
|    | 3.6         | Existing Drawings                        | 6 |  |  |  |
|    | 3.7         | Instrumentation                          | 6 |  |  |  |
|    | 3.8         | Previous Dam Safety Reviews              | 6 |  |  |  |
| 4. | Site        | Site Reconnaissance                      |   |  |  |  |
|    | 4.1         | General                                  |   |  |  |  |
|    | 4.2         | Visual Inspection                        |   |  |  |  |
|    | 4.3         | Structural Observations                  |   |  |  |  |
|    | 4.4         | Staff Interviews                         |   |  |  |  |
| 5. | Dan         | n Break Analysis                         |   |  |  |  |
| 6. | Con         | sequences Classification                 |   |  |  |  |
|    | 6.1 General |                                          |   |  |  |  |
|    | 6.2         |                                          |   |  |  |  |
|    |             |                                          |   |  |  |  |
|    |             |                                          |   |  |  |  |
|    |             | 6.2.3 Environmental and Cultural Losses  |   |  |  |  |
|    |             | 6.2.4 Infrastructure and Economic Losses |   |  |  |  |



|     | 6.3  | Concl                                        | usions                                           | 15 |  |  |
|-----|------|----------------------------------------------|--------------------------------------------------|----|--|--|
| 7.  | Fail | ure Mo                                       | odes Assessment                                  | 15 |  |  |
| 8.  | Geo  | Geotechnical & Structural Assessment         |                                                  |    |  |  |
|     | 8.1  | Gener                                        | ral                                              |    |  |  |
|     | 8.2  | Materi                                       | ial Parameters Estimation                        |    |  |  |
|     |      | 8.2.1                                        | Concrete Gravity Wall                            | 17 |  |  |
|     |      | 8.2.2                                        | Geotechnical Parameters                          | 17 |  |  |
|     | 8.3  | Seepa                                        | age Through Foundation                           | 17 |  |  |
|     | 8.4  | Struct                                       | tural Stability Review                           |    |  |  |
|     |      | 8.4.1                                        | Acceptance Criteria                              |    |  |  |
|     |      | 8.4.2                                        | Methodology                                      | 19 |  |  |
|     |      | 8.4.3                                        | Load Combinations                                | 19 |  |  |
|     |      | 8.4.4                                        | Results                                          | 20 |  |  |
|     | 8.5  | Gravit                                       | ty Wall Foundation Review                        |    |  |  |
|     | 8.6  | Liquefaction and Post-Earthquake Deformation |                                                  |    |  |  |
|     | 8.7  | Interna                                      | al Erosion (Piping)                              |    |  |  |
|     |      | 8.7.1                                        | Internal Erosion Mechanisms                      | 20 |  |  |
|     |      | 8.7.2                                        | Piping Potential                                 | 21 |  |  |
|     | 8.8  | Debris                                       | s Flow, Debris Flood and Flood Hazard Assessment |    |  |  |
| 9.  | Hyd  | lrotech                                      | nnical Assessment                                | 22 |  |  |
|     | 9.1  | Water                                        | rshed                                            |    |  |  |
|     | 9.2  | Climatic and Snow Course Data                |                                                  |    |  |  |
|     | 9.3  | Hydrometric Data                             |                                                  |    |  |  |
|     | 9.4  | Deterr                                       |                                                  |    |  |  |
|     |      | 9.4.1                                        | General                                          | 24 |  |  |
|     |      | 9.4.2                                        | Determination of the 1,000-Year Flood            | 25 |  |  |
|     |      | 9.4.3                                        | Inflow Design Flood                              |    |  |  |
|     | 9.5  | Flood                                        | Routing and Freeboard Determination              |    |  |  |
|     |      | 9.5.1                                        | Volume-Elevation Relationship                    | 27 |  |  |
|     |      | 9.5.2                                        | Rating Curve                                     | 27 |  |  |
|     |      | 9.5.3                                        | Flood Routing Results                            | 27 |  |  |
|     |      | 9.5.4                                        | Wind and Wave Considerations                     |    |  |  |
|     |      | 9.5.5                                        | Freeboard Assessment                             |    |  |  |
| 10. | Dar  | n Safe                                       | ty Management System                             |    |  |  |



|     | 10.1 | General                                         |    |  |  |  |  |
|-----|------|-------------------------------------------------|----|--|--|--|--|
|     | 10.2 | Operations, Maintenance and Surveillance Manual | 29 |  |  |  |  |
|     | 10.3 | Dam Emergency Plan                              | 29 |  |  |  |  |
|     | 10.4 | Public Safety Management                        | 29 |  |  |  |  |
|     | 10.5 | Dam Safety Expectations Assessment              | 29 |  |  |  |  |
|     |      | 10.5.1 General 29                               |    |  |  |  |  |
|     |      | 10.5.2 Dam Safety Analysis                      |    |  |  |  |  |
|     |      | 10.5.3 Operations, Maintenance and Surveillance |    |  |  |  |  |
|     |      | 10.5.4 Emergency Preparedness                   |    |  |  |  |  |
|     |      | 10.5.5 Dam Safety Review                        |    |  |  |  |  |
|     |      | 10.5.6 Dam Safety Management                    | 31 |  |  |  |  |
| 11. | Risk | Assessment                                      | 31 |  |  |  |  |
|     | 11.1 | General                                         | 31 |  |  |  |  |
|     | 11.2 | Risk Assessment Information                     | 31 |  |  |  |  |
|     | 11.3 | Risk Assessment Summary                         |    |  |  |  |  |
|     | 11.4 | Confidence Levels                               | 33 |  |  |  |  |
| 12. | Obs  | Observations and Conclusions                    |    |  |  |  |  |
|     | 12.1 | Background Review                               |    |  |  |  |  |
|     | 12.2 | Site Reconnaissance                             |    |  |  |  |  |
|     | 12.3 | Consequences Classification Review              |    |  |  |  |  |
|     | 12.4 | Failure Mode Assessment                         |    |  |  |  |  |
|     | 12.5 | Geotechnical & Structural Assessment            |    |  |  |  |  |
|     | 12.6 | Hydrotechnical Assessment                       |    |  |  |  |  |
|     | 12.7 | Dam Safety Management                           |    |  |  |  |  |
|     | 12.8 | Risk Assessment                                 |    |  |  |  |  |
| 13. | Rec  | ommendations                                    |    |  |  |  |  |
|     | 13.1 | Background Review                               |    |  |  |  |  |
|     | 13.2 | Site Reconnaissance                             |    |  |  |  |  |
|     | 13.3 | Consequences Classification Review              |    |  |  |  |  |
|     | 13.4 | Failure Mode Assessment                         |    |  |  |  |  |
|     | 13.5 | Geotechnical and Structural Assessment          |    |  |  |  |  |
|     | 13.6 | Hydrotechnical Assessment                       |    |  |  |  |  |
|     | 13.7 | Dam Safety Management                           |    |  |  |  |  |
|     |      | Risk Assessment                                 |    |  |  |  |  |
|     | 13.8 | U12V V22622111G111                              |    |  |  |  |  |



| 14.   | Dam Safety Review Assurance Statement | 36 |
|-------|---------------------------------------|----|
|       |                                       |    |
| Refer | rences                                | 37 |

#### List of Tables in Text

| Table 1.3   | Summary of Water Licence for Youbou Creek                                    | 2   |
|-------------|------------------------------------------------------------------------------|-----|
| Table 2.2   | Likelihood Rating Scale                                                      | 3   |
| Table 3.3   | Summary of Reviewed Aerial Photographs of the Youbou Creek Dam Area          | 4   |
| Table 3.5.a | Site Class C Design PGA and Sa for Youbou Creek Dam, Youbou, BC              | 5   |
| Table 3.5.b | Extrapolated Site Class C Design PGA and Sa for Youbou Creek Dam, Youbou, BC | 6   |
| Table 3.5.c | Design Earthquake Magnitudes for Youbou Creek Dam, Youbou, BC                | 6   |
| Table 5.0.a | Summary of Dam Breach Parameters                                             | 9   |
| Table 5.0.b | Suggested Limiting Froude (Fr) Numbers <sup>1.</sup>                         | 9   |
| Table 5.0.c | Definition of Water Flood Intensity                                          | .10 |
| Table 6.1   | Acceptance Criteria for Concrete Gravity Dams                                | .12 |
| Table 6.2   | Property Loss Criteria based on Consequences Classification                  | .15 |
| Table 7.0   | Summary of Causes of Static Concrete Dam Failures                            | .16 |
| Table 8.2   | Summary of Geotechnical Parameters Used in the Dam Assessment                | .17 |
| Table 8.3   | Estimated Rate of Toe Seepage for the Youbou Creek Dam                       | .18 |
| Table 8.4.a | Acceptance Criteria for Concrete Gravity Dams                                | .18 |
| Table 8.4.b | Factors of Safety for Stability of the Youbou Creek Dam                      | .20 |
| Table 8.8   | Typical Hazard for Melton Ratios                                             | .22 |
| Table 9.2.a | Regional Climate Stations                                                    | .23 |
| Table 9.2.b | Rainfall Intensity Frequency Data at Regional Climate Stations               | .23 |
| Table 9.2.c | Regional Snow Pillow Station                                                 | .24 |
| Table 9.2.d | Average Snowpack Data for Jump Creek Snow Pillow                             | .24 |
| Table 9.3   | Regional Hydrometric Stations                                                | .24 |
| Table 9.4.a | 1000-Year 24-Hour Rainfall                                                   | .25 |
| Table 9.4.b | Regional Analysis Peak Flood Estimates                                       | .26 |
| Table 9.5   | Results of Flood Routing                                                     | .28 |

## **Appendix Sections**

### Figures

| Figure 1.2a | Site Plan                                 |
|-------------|-------------------------------------------|
| Figure 1.2b | General Site Location & Access Routes     |
| Figure 3.4  | Bedrock Geology                           |
| Figure 4.1  | Estimated Dimensions of Youbou Creek Dam  |
| Figure 5.0a | Extent of Inundation & Maximum Flow Depth |



- Figure 5.0b Time (Hrs) for 0.6 m Flow Depth
- Figure 5.0c Flood Hazard Rating
- Figure 8.3 Steady State Seepage Analysis: Reservoir Level at Spillway Elevation
- Figure 8.8 Melton Ratio of Youbou Creek
- Figure 9.1 Youbou Creek Watershed
- Figure 9.2 Climate and Automated Snow Pillow Stations
- Figure 9.3 Hydrometric Stations
- Figure 9.4 Inflow Design Flood Hydrographs
- Figure 9.5a Youbou Creek Dam Area Elevation Storage Curves
- Figure 9.5b Youbou Creek Dam Spillway Rating Curve
- Figure 9.5c Youbou Creek Dam Flood Routing Hydrographs
- Figure 9.5d Youbou Creek Dam Reservoir Flood Levels
- Figure 10.1 Dam Safety Management System

#### **Photographs**

- Photo 1 Upstream stilling basin and channel leading to culvert.
- Photo 2 Reservoir as seen from the upstream side of the dam.
- Photo 3 Culvert discharging into reservoir upstream of the dam.
- Photo 4 Right upstream access to the dam crest.
- Photo 5 Dam crest as viewed from right side of the dam.
- Photo 6 Upstream face of the dam above the waterline.
- Photo 7 Corroded bent guardrail on the dam crest.
- Photo 8 Weathering of concrete on the left side of the spillway at the stoplog insert.
- Photo 9 Concrete deterioration at edge of spillway.
- Photo 10 Concrete deterioration above and below water line.
- Photo 11 Backside of cold joint as viewed from within the reservoir.
- Photo 12 Downstream face of the dam as viewed from above at the right abutment.
- Photo 13 Downstream face of the dam as viewed from below looking towards right abutment.
- Photo 14 Horizontal cracking and erosion on downstream dam face approximately 1 m below the crest.
- Photo 15 Vegetation growing on the dam face to the right of the spillway.
- Photo 16 Water flowing over spillway as viewed from below.
- Photo 17 Downstream face of the dam as viewed from downstream.
- Photo 18 Horizontal groove on the left downstream face approximately 1.7 m below the crest.
- Photo 19 Weathering on the downstream face noted throughout the crest and front face.
- Photo 20 Downstream face as viewed from the left of the spillway.
- Photo 21 Low level outlet on the right side of the dam.
- Photo 22 Low level outlet pipe and water intake line at left side of the dam.
- Photo 23 Low level outlet and water intake pipes viewed from dam crest.
- Photo 24 Outlet channel as viewed from the dam crest.



#### Appendices

- Appendix B Existing Dam Drawings
- Appendix C Dam Inspection Notes
- Appendix D Hazard and Failure Modes Analysis
- Appendix E Dam Stability and Foundation Calculations
- Appendix F Check Sheets for Dam Safety Expectations, Deficiencies and Priorities
- Appendix G NDMP Risk Assessment Information Template
- Appendix H Dam Safety Assurance Statement
- Appendix I Statement of General Conditions Geotechnical



### **Acronyms and Abbreviations**

| AEP      | Annual Exceedance Probability                                               |
|----------|-----------------------------------------------------------------------------|
| ALARP    | As Low As Reasonably Practicable                                            |
| AMSL     | Above Mean Sea Level                                                        |
| APEGBC   | Association of Professional Engineers and Geoscientists of British Columbia |
| BC       | British Columbia                                                            |
| BC MoE   | British Columbia Ministry of Environment                                    |
| CDA      | Canadian Dam Association                                                    |
| CSP      | Corrugated Steel Pipe                                                       |
| CSR      | Cyclic Stress Ration                                                        |
| CSRS     | Canadian Spatial Reference System                                           |
| CVRD     | Cowichan Valley Regional District                                           |
| DBE      | Dam Breach Elevation                                                        |
| DDSP     | Directive for Dam Safety Program                                            |
| DEP      | Dam Emergency Plan                                                          |
| DSG      | Dam Safety Guidelines, Canadian Dam Association 2007                        |
| DSR      | Dam Safety Review                                                           |
| EDGM     | Earthquake Design Ground Motion                                             |
| EPP      | Emergency Preparedness Plan                                                 |
| ERP      | Emergency Response Plan                                                     |
| FEMA     | Federal Emergency Management Agency                                         |
| FoS      | Factor of Safety                                                            |
| FSR      | Forestry Service Road                                                       |
| GPR      | Ground Penetrating Radar                                                    |
| GPS      | Global Positioning System                                                   |
| GSC      | Geological Survey of Canada                                                 |
| HEC-HMS  | Hydrologic Engineering Center - Hydrologic Modeling System                  |
| ICOLD    | International Congress on Large Dams                                        |
| IDF      | Inflow Design Flood                                                         |
| LOL      | Loss of Life                                                                |
| MFLNRORD | Ministry of Forests, Lands, Natural Resource Operations & Rural Development |



| MSC    | Meteorological Service of Canada         |
|--------|------------------------------------------|
| NAD    | North American Datum                     |
| NBCC   | National Building Code of Canada         |
| NDMP   | National Disaster Mitigation Program     |
| OMS    | Operations, Maintenance and Surveillance |
| PAR    | Population at Risk                       |
| PGA    | Peak Ground Acceleration                 |
| PMF    | Probable Maximum Flood                   |
| PMP    | Probable Maximum Precipitation           |
| PPP    | Precise Point Positioning                |
| PSP    | Public Safety Plan                       |
| RAIT   | Risk Assessment Information Template     |
| RFP    | Request for Proposal                     |
| Sa(T)  | Spectral Accelerations                   |
| SCS    | US Soil Conservation Service             |
| SMPDBK | Simplified Dam-Break                     |
| TRIM   | Terrain Resource Information Management  |
| UBC    | University of British Columbia           |
| US     | United States                            |
| USBR   | United States Bureau of Reclamation      |
| UTM    | Universal Transverse Mercator            |
| USGS   | United States Geological Survey          |



# 1. Introduction

### 1.1 General

The Cowichan Valley Regional District (CVRD) engaged Ecora Engineering & Resource Group Ltd. (Ecora) to undertake a comprehensive Dam Safety Review (DSR) and risk assessment of the Youbou Creek Dam located near the community of Youbou, BC on the northern shore of Cowichan Lake.

The dam functions as part of the CVRD managed township of Youbou water distribution system.

This report presents the technical findings of the Youbou Creek Dam DSR and it is understood that this is the first comprehensive DSR of this facility.

A DSR is considered to be a "snapshot in time" and the observations, conclusions, and recommendations provided in this report are deemed to be valid until the next scheduled DSR which should be conducted in 10 years (2028) for the Youbou Creek Dam as per the Canadian Dam Association (CDA) DSR Guidelines 2007 (2013 Edition). However, if conditions (e.g. loading, reservoir level, etc.) change, the results of this DSR may no longer be considered valid and/or current, and a reassessment may be required.

Youbou Creek Dam is catalogued in the BC Ministry of Forests, Lands, Natural Resource Operations & Rural Development (MFLNRORD) Dam Safety Section, Dam File No. D730170-00. The BC MFLNRORD has currently assigned the dam a consequences classification rating of "Significant" in terms of the BC Dam Safety Regulation (BC Reg. 40/2016), and the Canadian Dam Association (CDA) DSR Guidelines 2007 (2013 Edition).

The DSR was undertaken in general accordance with the requirements of the British Columbia Water Sustainability Act including all amendments up to BC Reg. 301/2016 (December 7, 2016), the BC Dam Safety Regulation BC Reg. 40/2016 (February 29, 2016), the Association of Professional Engineers and Geoscientists of BC (APEGBC) Professional Practice Guidelines – Legislated Dam Safety Reviews in BC V3.0 (October 2016), and the Canadian Dam Association (CDA) Dam Safety Guidelines (DSG) 2007 (2013 Edition).

The objective of the British Columbia Dam Safety Regulation (BC Reg. 40/2016) is to mitigate loss of life and damage to property and the environment from a dam breach. This Regulation requires dam owners to:

- Operate the dam in a safe manner in accordance with any terms and conditions;
- Inspect their dams;
- Undertake proper maintenance;
- Report incidents and take remedial action; and,
- Undertake periodic Dam Safety Reviews.

The risk assessment of the Youbou Creek Dam was undertaken in general accordance with the National Disaster Mitigation Program (NDMP) framework.

### 1.2 Dam Description and Access

Youbou Creek Dam is a concrete gravity dam situated on Youbou Creek approximately 0.5 km north of Cowichan Lake, at Map Grid (NAD 83) co-ordinates E410956, N5414653 (Zone 10). The dam is oriented east to west and is



situated in a north to south trending ravine. The dam impounds approximately 1770 m<sup>3</sup> of water at the spillway level, with a watershed area of approximately 2.09 km<sup>2</sup> upstream of the dam.

According to the Ministry of Forests, Lands, Natural Resource Operations and Rural Development (MFLNRORD) dam database, Youbou Creek Dam has a height of 9 m with a crest length of 18.3 m. The spillway for the facility is an overflow weir located in the centre of the structure. Measurements taken at the time of inspection estimated the spillway to be 0.76 m in height with a length of 2.38 m. The top width of the structure is estimated as 0.46 m. The downstream face of the structure is estimated to be sloped at 20° to the vertical.

Stored water can be discharged via three low level outlet pipes. Two discharge directly to Youbou Creek at the downstream toe of the dam on either side of the spillway and a third, that acts an intake for the town's water supply, is located on the left side (looking downstream) of the dam.

A sedimentation basin is located upstream, which feeds into the reservoir through twin Corrugated Steel Pipe (CSP) culverts estimated to be 1.2 m and 1.1 m in diameter located above the reservoir. Three culverts are located directly downstream of the dam under the access road and are estimated to be 1.1 m in diameter.

Public access to the dam is provided from Youbou, BC, via Youbou Road with directions as follows. Travel westbound along Youbou Road. Turn right onto Hemlock Street. Follow pavement around corner to Community Lane. Turn right onto the second gravel road approximately 75 m from corner. Continue for 200 m to dam. The site location is presented in Figure 1.2a and the access route is shown in Figure 1.2b.

### 1.3 Operation, Maintenance and Surveillance

Operations at Youbou Creek Dam are regulated under the conditional water licence summarized in Table 1.3 below.

| Table 1.3 | Summary of Water Licence for Youbou Creek |
|-----------|-------------------------------------------|
|-----------|-------------------------------------------|

| Licence Type | Licence Number | Purpose                    | Quantity (m <sup>3</sup> /year) | Licence Holder |
|--------------|----------------|----------------------------|---------------------------------|----------------|
| Conditional  | C037415        | Waterworks: Local Provider | 63054.268                       | CVRD           |

Copies of individual water licenses can be found at http://a100.gov.bc.ca/pub/wtrwhse/water\_licences.input.

It is understood that the day to day operation and maintenance of the Youbou Creek Dam is overseen by the CVRD.

From discussions with the CVRD, it is understood that surveillance (inspection) of the dam is generally undertaken weekly, weather permitting, however it is not documented. Formal annual inspections are carried out using the MFLNRORD dam site surveillance template.

# 2. Scope of Work

### 2.1 Comprehensive Dam Safety Review

Ecora's scope of work for the DSR was developed in accordance with the requirements of the CDA Dam Safety Guidelines 2007 (2013 Edition). In summary, the study included the following tasks:

- Background review;
- Site reconnaissance;
- Review of consequences classification;



- Geotechnical assessment including seepage analyses, piping potential and considerations for liquefaction and post-earthquake deformation;
- Structural stability assessment including calculation of the position of the resultant force, normal stresses, and calculated sliding factors;
- Hydrotechnical analysis including hydrological analysis, dam break analysis, flood routing and hydraulics;
- Review of any existing Operation, Maintenance & Surveillance Manual;
- Review of any existing Dam Emergency Plans (Emergency Response Plan and/or Emergency Preparedness Plan);
- Review of any public safety management strategies;
- Risk assessment as per the NDMP framework;
- Assessment of compliance with CDA design criteria; and,
- Development of conclusions and recommendations.

The results of each task are detailed in the following sections.

### 2.2 NDMP Risk Assessment

The NDMP Risk Assessment Information Template (RAIT) provides a likelihood rating scale for a specific risk event and the likelihood that this event will occur based on conditions expected over a certain timeframe (Table 2.2). As the consequences of a dam failure (break) are the same, the event for this assessment is defined as any embankment overtopping, internal erosion, slope instability and/or earthquake induced condition(s) that cause failure of Youbou Creek Dam. The NDMP RAIT is discussed in more detail in Section 11.

| Table 2.2 | Likelihood F | Rating Scale |
|-----------|--------------|--------------|
|-----------|--------------|--------------|

| Likelihood<br>Rating | Definition                                                                                       |
|----------------------|--------------------------------------------------------------------------------------------------|
| 5                    | The event is expected and may be triggered by conditions expected over a 30-year period.         |
| 4                    | The event is expected and may be triggered by conditions expected over a 30 – 50-year period     |
| 3                    | The event is expected and may be triggered by conditions expected over a 50 – 500-year period    |
| 2                    | The event is expected and may be triggered by conditions expected over a 500 – 5,000-year period |
| 1                    | The event is possible and may be triggered by conditions exceeding a period of 5,000 years       |

# 3. Background Review

### 3.1 Sources of Information

The following sources of background information were reviewed during the DSR:

Historic aerial photographs;



- Readily available published sources of geological data;
- Existing dam and reservoir drawings;
- Discussions with CVRD staff familiar with the site; and,
- MFLNRORD Dam Safety Branch files.

A detailed list of the various documents reviewed from these sources is provided in Appendix A.

### 3.2 Design, Construction and Modification

There is limited information available with respect to the design and construction of Youbou Creek Dam, however it is known that the dam was originally constructed by a nearby sawmill that has since closed. The background information available at the time of the dam safety review on the construction and history of the dam is listed in Appendix A and is predominantly related to the reservoir rather than the concrete gravity dam structure. It isn't clear in what year the dam was constructed.

A review of documentation for the Youbou Creek Dam indicates that there is only one existing drawing of the dam, namely a sketch dated March 1991 for a work order of proposed repairs of the dam (W.O. #4125). This sketch is presented in Appendix B. The listed items for the work order included:

- Make sure spillway boards are usable when required;
- Repair steps;
- Replace boards and blind flange around pipework downstream of dam to the townsite;
- Dredge stilling basin and replace small dam;
- Repair and rehinge 4" pipe between stilling basin and dam; and,
- Dredge dam basin.

There is no documentation available for the completion of this work order.

### 3.3 Historical Aerial Photographs

A review was conducted of available historical aerial photographs of the Youbou Creek Dam area held by the Geography Department of the University of British Columbia (UBC) as summarized in Table 3.3 below.

| Year | Aerial Photo No.  | Туре            |
|------|-------------------|-----------------|
| 1946 | BC247:12          | Black and White |
| 1949 | BC816:112         | Black and White |
| 1959 | BC5006:117-116    | Black and White |
| 1962 | BC5044:79-78      | Black and White |
| 1968 | BC7109:121-120    | Black and White |
| 1972 | BC7410:103-102    | Black and White |
| 1979 | 30BCC205:37-36    | Colour          |
| 1984 | 30BC84026:235-236 | Black and White |

Table 3.3 Summary of Reviewed Aerial Photographs of the Youbou Creek Dam Area



| Year | Aerial Photo No. | Туре            |
|------|------------------|-----------------|
| 1990 | 30BCC90013:17-16 | Black and White |
| 2007 | ME07464C:46-45   | Colour          |

The review of the available historical aerial photographs included the historical condition of the dam, reservoir side slopes and catchment noting the following:

- The dam was obscured by foliage in most photographs reviewed. The earliest photo which the dam was clearly visible was 1959, however an access road that leads towards the dam appears to exist as early as 1946;
- Large areas to the east and west of the dam were deforested prior to 1946, and remained deforested in 1949, 1959 and 1962;
- Forest service roads (FSR) north of Youbou Creek Dam were constructed between the 1968 and 1972 historical aerial photographs, with a large area to the north in the upper reaches of the catchment deforested; and
- No obvious signs of instability or erosion of the dam watershed were observed in the photos.

### 3.4 Geological Setting

The Geological Survey of Canada (GSC) 1:50,000,000 scale map "Geological Map of Canada" indicates that the site is underlain by thickly bedded tuffite and lithic tuffite, breccia, tuff, feldspar and quartz-feldspar, crystal tuff, lapilli tuff, rhyolite, dacite, laminated tuff, jasper, chert, hematite-chert iron formation. The bedrock geology for the site is presented on Figure 3.4.

### 3.5 Seismicity

The GSC has developed a new probabilistic (5th Generation) seismic hazard model (Halchuk, Adams and Allen, 2015) that forms the basis of the seismic design provisions of the 2015 National Building Code of Canada (NBCC, 2015).

Based on the surficial geology of the area, which indicates shallow bedrock, the site classification for seismic response for the Youbou Creek Dam is considered to be Site Class C (very dense soil and soft rock). Peak Ground Accelerations (PGA) and Spectral Accelerations (Sa(T)) for a reference "Site Class C" (very dense soil and soft rock) can be obtained from Earthquakes Canada for various return periods, with the reference values for the Youbou Creek Dam summarized in Table 3.5.a.

| -                                   |         |         |         |         |         |
|-------------------------------------|---------|---------|---------|---------|---------|
| Annual Exceedance Probability (AEP) | PGA (g) | Sa(0.2) | Sa(0.5) | Sa(1.0) | Sa(2.0) |
| 1/100 year                          | 0.103   | 0.241   | 0.198   | 0.095   | 0.050   |
| 1/475 year                          | 0.264   | 0.604   | 0.533   | 0.281   | 0.157   |
| 1/1,000 year                        | 0.375   | 0.847   | 0.777   | 0.438   | 0.256   |
| 1/2,475 year                        | 0.535   | 1.196   | 1.126   | 0.683   | 0.415   |

| Table 3.5.a | Site Class C Design PGA and Sa for Youbou Creek Dam, Youbou, BC   |
|-------------|-------------------------------------------------------------------|
| 14010 0.0.4 | one ondee o beelgin i er and od ter redbed oreen bain, redbed, be |

For seismic hazards with very low probabilities (i.e. return periods greater than 2,475 years) the GSC recommends plotting the annual probability versus acceleration of the 1/475 year and 1/2,475 year values on a log-log scale and extrapolating the line to the required return period. Extrapolated site "Class C" PGA and Sa(T) reference values for the Youbou Creek Dam are summarized in Table 3.5.b.



| Annual Exceedance Probability (AEP) | PGA (g) | Sa(0.2) | Sa(0.5) | Sa(1.0) | Sa(2.0) |
|-------------------------------------|---------|---------|---------|---------|---------|
| 1/5,000 year                        | 0.854   | 1.208   | 1.188   | 1.000   | 0.813   |
| 1/10,000 year                       | 0.995   | 1.333   | 1.333   | 1.167   | 0.958   |

| Table 3.5.b | Extrapolated Sit | e Class C Design | PGA and Sa for | Youbou Creek Da | m, Youbou, BC |
|-------------|------------------|------------------|----------------|-----------------|---------------|
|-------------|------------------|------------------|----------------|-----------------|---------------|

With respect to selection of earthquake design magnitudes the CDA Technical Bulletin, Seismic Hazard Considerations for Dam Safety recommends utilising the greatest of the mean magnitude, modal magnitude or the 84<sup>th</sup> percentile of the total magnitude contributions when considering multiple seismogenic probabilistic seismic hazards.

The relative contribution of the earthquake sources to the seismic hazard in terms of distance and magnitude can be obtained by deaggregation of the seismic hazard result. The deaggregation data for the NBCC 2015 design model has been obtained from Earthquakes Canada, which provides the mean and modal magnitude of the seismic hazard for the Youbou Creek Dam for the 1/2,475 year event as summarized in Table 3.5.c.

Table 3.5.c Design Earthquake Magnitudes for Youbou Creek Dam, Youbou, BC

| Magnitude Contributions     | PGA   | Sa(0.2) | Sa(0.5) | Sa(1.0) | Sa(2.0) |
|-----------------------------|-------|---------|---------|---------|---------|
| Mean                        | 7.910 | 7.810   | 8.080   | 8.470   | 8.640   |
| Modal                       | 8.950 | 8.950   | 8.950   | 8.950   | 8.950   |
| 84 <sup>th</sup> Percentile | 9.050 | 9.000   | 9.050   | 9.100   | 9.100   |

### 3.6 Existing Drawings

As discussed in Section 3.2, a review of existing documentation for the Youbou Creek Dam indicates that there is only one existing drawing of the dam, namely a sketch dated March 1991 for a work order of proposed repairs of the dam (W.O. #4125). This sketch is presented on Appendix B.

### 3.7 Instrumentation

There is no instrumentation installed in Youbou Creek Dam.

### 3.8 Previous Dam Safety Reviews

It is understood that this DSR is the first for this facility and as such no previous DSR is available for review.

# 4. Site Reconnaissance

### 4.1 General

Ecora conducted a site reconnaissance of the Youbou Creek Dam on two occasions, as part of the Request for Proposal (RFP) on January 17, 2018 and as part of a scheduled site inspection on March 28, 2018. Ecora's site representatives in March were Michael J. Laws, P.Eng, Caleb Pomeroy, P.Eng., Dr. Adrian Chantler, P.Eng. and Bram Hobuti, P.Eng.

The site reconnaissance comprised three components, namely:



- A visual inspection of the exposed section of the dam, underwater pole camera inspection of the submerged upstream slope of the dam, a simple survey of the height of sediment behind the dam and tour of some of the area in the vicinity of Youbou Creek;
- Measurement of the concrete wall rebound using a Schmidt hammer at a number of locations; and,
- Staff interviews.

A summary of the site reconnaissance notes is provided as Appendix C. A summary of key dam dimensions measured during the site reconnaissance is provided in Figure 4.1.

### 4.2 Visual Inspection

Ecora inspected the concrete gravity dam structure including the spillway, cold joints, height of sediment on the upstream side of the dam, and outlet (creek downstream) of the dam. Photographs 1 through 18 show the Youbou Creek Dam at the time of site visit undertaken on March 28, 2018. The observations made through this inspection are presented in the Photo Log following the text of this report.

Key observations from the site inspection are as follows:

- Five corrugated steel pipe culverts of approximately 1.1 m diameter and up to 6 m length were observed, two beneath the roadway between the stilling basin and the dam and three beneath the roadway downstream of the dam (Photo 3).
- The height to the top of the sediment on the upstream side of the dam varied between 1.27 m and 5.35 m below the dam crest elevation, sediment is lowest in elevation towards the centre of the dam (Photo 5);
- The wall width is approximately 480 mm at the dam crest, the upstream wall face is vertical, the downstream wall face has a back slope of approximately 15° (Photo 9);
- Two cold joints were observed at approximately 1.0 m and 2.7 m vertically below the dam crest (Photo 11, 15);
- The water level at the time of both site visits was above the spillway elevation (Photo 12-14);
- The maximum measured height of the downstream dam face is approximately 8.5 m (Photo 14);
- The spillway is approximately 2.38 m long at an elevation of approximately 760 mm below the dam crest elevation (Photo 14, 17);
- Youbou Creek Dam was formed on bedrock (Photo 18);
- A 300 mm diameter steel low level outlet was observed between the steps and the spillway on the left side of the downstream wall face (Photo 19-20); and,
- The townsite water supply comprises a 150 mm diameter pipe on the right side of the downstream wall face (Photo 19-20).

### 4.3 Structural Observations

During the visual non-destructive structural assessment of the dam the following key observations were made:



- Signs of moderate weathering, pitting, and erosion of concrete were noted at the waterline (Photo 6).
- Guardrail along crest of dam was noted to be corroded and the stanchion base connections showed signs of movement in some locations (Photo 7).
- Erosion was noted behind the east stoplog channel steel plate (fastened to the side face of the spillway) (Photo 8).
- Horizontal cracking and erosion were noted on the west half of the dam face about 1 m down from the crest of the dam. It was determined that cracks extended through the full width of dam, as water was steadily seeping through the cracks (Photo 11).
- Extensive vegetation was noted throughout the crest and downstream face of the dam (Photo 15).
- A horizontal groove was noted on the east half of the downstream face at about 1.7 m from the crest of the dam along what may have been a construction concrete pour break (Photo 15).
- The downstream face of the dam was heavily eroded/weathered exposing the concrete aggregate throughout (Photo 16).
- Horizontal cracking and erosion were also noted on the east half of the dam face in a similar pattern as the west half, however, no water seepage was noted (Photo 16).

Schmidt hammer rebound values were taken at a number of locations along the dam wall and varied between 8 and 33 with an average reading of 19, corresponding to approximately 10 MPa. It should be noted that given the extent of exposed aggregate at the concrete surface (due to erosion of the concrete paste) and the variability of the values, the rebound values are not considered to have provided an accurate representation of the overall concrete compressive strength. To better understand the in-situ concrete compressive strength, core samples would need to be taken.

### 4.4 Staff Interviews

Following completion of the site reconnaissance, an interview with David Parker (CVRD) was carried out regarding the operations, maintenance and surveillance of the dam.

Key points from this discussion are as follows:

 Surveillance (inspection) of the dam is undertaken predominantly by the CVRD weekly, weather permitting.

# 5. Dam Break Analysis

The consequences classification of a dam depends on the incremental consequences of a dam failure, and this can be the result of overtopping, a piping failure, or an earthquake for example. A dam break analysis, including characterization of a hypothetical dam breach, flood wave routing, and inundation mapping, was carried out as part of this review.

Failure times of concrete gravity dams are estimated to be between 6 and 18 minutes (Federal Energy Regulatory Commission, 2015), therefore the characterization of the dam breach and initial flood hydrograph was conducted by assuming a catastrophic failure over the course of 6 minutes during a period of high inflow.



FERC recommends that the average breach width of concrete gravity dams consist of 1 or more monoliths with an average breach width of less than half the length of the dam. However, documentation from FERC further states that higher breach widths should be considered if overtopped for a long period of time. In the case of Youbou Creek Dam it is assumed that the dam consists of one monolith and that the dam would continue to be overtopped until the end of the storm event.

The characterization of the dam breach and initial flood hydrograph was conducted by assuming that the reservoir would rupture during the passage of the 100-year inflow event and that the water in the reservoir is fully discharged during the peak inflow. Due to the small size of the reservoir it was conservatively assumed that water will be discharged fully within the 6 minute failure period. The dam breach parameters are given in Table 5.0.a.

| Dam Breach Parameter           | Value                                         |
|--------------------------------|-----------------------------------------------|
| Type of Dam:                   | Concrete Gravity                              |
| Peak Inflow to Reservoir:      | 34.2 m <sup>3</sup> /s (100-year flood event) |
| Water Elevation at Dam Breach: | 9.45 m (100-year flood maximum elevation)     |
| Volume of Dam Breach:          | 2,135 m <sup>3</sup>                          |
| Reservoir Surface Area:        | 502.3 m <sup>2</sup>                          |
| Width of Crest:                | 0.48 m                                        |
| Length of Crest:               | 18.3 m                                        |
| Time at Which Failure Occurs:  | 8.1 h                                         |
| Peak Breach Flow:              | 7.3 m <sup>3</sup> /s                         |

#### Table 5.0.a Summary of Dam Breach Parameters

The resulting dam breach hydrographs were routed using a 2-dimensional volume conservation flood routing model, FLO-2D, with the flood wave simulation run for 24 hours. Topographical inputs for the model were developed from the BC Terrain Resource Information Management (TRIM) Program data supplemented by LIDAR data from the CVRD.

It should be noted that in the FLO-2D model, the ground surface is represented by a grid. The grid size utilized for this project is 5 m × 5 m. This is considered adequate to represent the terrain of the study area. Sudden changes in topographic relief, such as channels, roads and river dykes, may not be accurately characterized at this resolution, as elevation variations are averaged out within a grid area and therefore some localised variation in flow depths from those modelled is anticipated.

The model assumed that any hydraulic structures such as culverts were blocked by debris picked up by the flood wave and therefore their effect on routing the flood wave was ignored.

Changes in the Manning's roughness coefficients in the FLO-2D model due to variations in the flood wave depth, velocity and flow regime are automatically calculated by assigning a limiting Froude number. The Froude number represents the relationship between the kinematic flow forces, gravitational forces and the threshold between subcritical and supercritical flow. Limiting Froude numbers assigned to the grid cells in the analysis are based on the suggested values summarized in Table 5.0.b for various terrain characteristics.

| Table 5.0.b | Suggested | Limiting | Froude | (Fr) | Numbers <sup>1.</sup> |
|-------------|-----------|----------|--------|------|-----------------------|
|-------------|-----------|----------|--------|------|-----------------------|

| Terrain Characteristics | Flat or Mild Slope<br>(large rivers and floodplains) | Steep Slope<br>(alluvial fans and watersheds) |  |
|-------------------------|------------------------------------------------------|-----------------------------------------------|--|
| Channels                | 0.4 - 0.6                                            | 0.7 – 1.05                                    |  |
| Overland                | 0.5 - 0.8                                            | 0.7 – 1.5                                     |  |
| Streets                 | 0.9 – 1.2                                            | 1.1 – 1.5                                     |  |

From FLO-2D Reference Manual, September 1996.



Figure 5.0a presents the results of the flood extents and maximum depth of flooding, indicating a total inundation area of 4.2 ha. The flow travels along Youbou Creek for approximately 500 m where it enters Cowichan Lake. It can be noted that most of the flooding can be attributed to the 100-year flood rather than the dam breach due to the relatively small storage volume of the reservoir.

Figure 5.0b shows the delay time between the start of the 100-year rainfall event and the time at which flooding reaches a depth of 0.6 m.

Areas of interest impacted by the dam breach and flooding are summarized below.

- Transportation Infrastructure:
  - Youbou Road;
  - Youbou Community Lane;
  - Cedar Drive;
  - Alder Cresent;
  - Lake Boulevard; and
  - Adelina Lane.
- Residences:
  - Minor Flooding of Downstream Structures.
- Other Potential Impacts:
  - None

Flood hazard maps are presented on Figure 5.0c, using the method of Garcia et. Al (2003 and 2005). The flood hazard level at a specific location is a function of flood intensity (flow depth and velocity) and probability. The map uses three colours to define high (red), medium (orange) and low (yellow) hazard levels. Definitions of each flood hazard are provided in the legend on the map and in Table 5.0.c below.

| Table 5.0.c Definition of Water Flood Intensity | Table 5.0.c | Definition | of Water | Flood | Intensity |
|-------------------------------------------------|-------------|------------|----------|-------|-----------|
|-------------------------------------------------|-------------|------------|----------|-------|-----------|

| Flood Intensity | Maximum Depth "h" (m) |     | Product of Maximum Depth "h" Time<br>Maximum Velocity "v" (m²/s) |
|-----------------|-----------------------|-----|------------------------------------------------------------------|
| High            | h > 1.5 m             | OR  | v h > 1.5 m²/s                                                   |
| Medium          | 0.5 m < h < 1.5 m     | OR  | 0.5 m²/s < v h < 1.5 m²/s                                        |
| Low             | h < 0.5 m             | AND | v h < 0.5 m²/s                                                   |

# 6. Consequences Classification

### 6.1 General

A consequences classification system has been developed by the Canadian Dam Association (CDA, 2007) to categorize the consequences of dam failure in terms of potential loss of life; environmental and cultural losses; and infrastructure and economic losses. The consequences classification of a dam should be selected using the highest



rating based on these types of loss. Note that the consequences are incremental to those that would have occurred in the same event without failure of the dam. The CDA (2007) defines incremental consequences of failure as:

"The incremental consequences or damage that a dam failure might inflict on upstream areas, downstream areas or on the dam itself, over and above any losses or damage that may have occurred in the same event or conditions had the dam not failed".

These consequences categories are applied to establish guidelines for some of the design parameters for a dam, such as the Inflow Design Flood (IDF) and the Earthquake Design Ground Motion (EDGM), and the standard of care expected of owners. The BC Dam Safety Regulation and CDA describes five consequences categories: "Low", "Significant", "High", "Very High" and "Extreme".

The BC Dam Safety Regulation 40/2016 (February 29, 2016), and the 2007 CDA Dam Safety Review Guidelines (2013 Edition), provide consequences classification criteria as well as suggested design flood and earthquake levels as a function of dam consequences classification as reproduced as Table 6.1 below. It is noted that the BC Dam Safety Regulation was amended in 2011 so that consequences classifications are now in alignment with those provided in the 2007 CDA guidelines and care must be taken in the interpretation of engineering reports dated prior to November 2011.



#### Table 6.1 Acceptance Criteria for Concrete Gravity Dams

| Dam<br>Classification                 | Population<br>at Risk  | Loss of<br>Life      |                                                                                                                                                                                                                | Environmental and Cultural                                                                                                                                                                                                                                                                                                                                     | Annual Exceeda                           |                                      |
|---------------------------------------|------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|
| from BC Reg.<br>40/2016 & CDA<br>2007 | (BC Reg.<br>40/2016)   | (BC Reg.<br>40/2016) | Infrastructure and Economics<br>(BC Reg. 40/2016)                                                                                                                                                              | Losses<br>(BC Reg. 40/2016)                                                                                                                                                                                                                                                                                                                                    | EQ Design<br>Ground Motion<br>(CDA 2007) | Inflow Design<br>Flood<br>(CDA 2007) |
| Extreme                               | Permanent <sup>3</sup> | >100                 | Extremely high economic losses<br>affecting critical infrastructure,<br>public transportation or services or<br>commercial facilities, or some<br>destruction of or some severe<br>damage to residential areas | <ul> <li>Major loss or deterioration of:</li> <li>a) critical fisheries habitat or<br/>critical wildlife habitat,</li> <li>b) rare or endangered species,</li> <li>c) unique landscapes, or</li> <li>d) sites having significant cultural<br/>value, and restoration or<br/>compensation in kind is<br/>impossible.</li> </ul>                                 | 1/10,000                                 | PMF                                  |
| Very High                             | Permanent <sup>3</sup> | 10-100               | Very high economic losses affecting<br>important infrastructure, public<br>transportation or services or<br>commercial facilities, or some<br>destruction of or some severe<br>damage to residential areas     | <ul> <li>Significant loss or deterioration of:</li> <li>a) critical fisheries habitat or<br/>critical wildlife habitat,</li> <li>b) rare or endangered species,</li> <li>c) unique landscapes, or</li> <li>d) (d) sites having significant<br/>cultural value, and restoration<br/>or compensation in kind is<br/>possible but impractical</li> </ul>          | ½ between<br>1/2,475 and<br>1,10,000     | ⅔ between<br>1/1000 year<br>and PMF  |
| High                                  | Permanent <sup>3</sup> | 1-10                 | High economic losses affecting<br>infrastructure, public transportation<br>or services or commercial facilities,<br>or some destruction of or some<br>severe damage to scattered<br>residential buildings      | <ul> <li>Significant loss or deterioration of:         <ul> <li>a) important fisheries habitat or<br/>important wildlife habitat,</li> <li>b) rare or endangered species,</li> <li>c) unique landscapes, or</li> <li>d) sites having significant cultural<br/>value, and restoration or<br/>compensation in kind is highly<br/>possible</li> </ul> </li> </ul> | 1/2,475                                  | ⅓ between<br>1/1000 year<br>and PMF  |

| Dam<br>Classification                 | Population<br>at Risk          | Loss of<br>Life                                  | Environmental and Cultural                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                               | Annual Exceeda<br>Le                     | ance Probability<br>vel              |
|---------------------------------------|--------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------|
| from BC Reg.<br>40/2016 & CDA<br>2007 | (BC Reg.<br>40/2016)           | (BC Reg.<br>40/2016)                             | Infrastructure and Economics<br>(BC Reg. 40/2016)                                                                                                                                                                                                                    | Losses<br>(BC Reg. 40/2016)                                                                                                                                                                                                                                                                                                   | EQ Design<br>Ground Motion<br>(CDA 2007) | Inflow Design<br>Flood<br>(CDA 2007) |
| Significant                           | Temporary<br>Only <sup>2</sup> | Low<br>potential for<br>multiple loss<br>of life | Low economic losses affecting<br>limited infrastructure and residential<br>buildings, public transportation or<br>services or commercial facilities, or<br>some destruction of or damage to<br>locations used occasionally and<br>irregularly for temporary purposes | <ul> <li>No significant loss or deterioration of:</li> <li>a) important fisheries habitat or important wildlife habitat,</li> <li>b) rare or endangered species,</li> <li>c) unique landscapes, or</li> <li>d) sites having significant cultural value, and restoration or compensation in kind is highly possible</li> </ul> | 1/1,000                                  | Between 1/100<br>and 1/1000<br>year  |
| Low                                   | None <sup>1</sup>              | 0                                                | Minimal economic losses mostly<br>limited to the dam owner's property,<br>with virtually no pre-existing<br>potential for development within the<br>dam inundation zone                                                                                              | Minimal short-term loss or<br>deterioration and no long-term loss<br>or deterioration of:<br>a) fisheries habitat or wildlife<br>habitat,<br>b) rare or endangered species,<br>c) unique landscapes, or<br>d) sites having significant cultural<br>value                                                                      | 1/475                                    | 1/100 year                           |

<sup>1.</sup> There is no identifiable population at risk

<sup>2.</sup> People are only occasionally and irregularly in the dam-breach inundation Zone, for example stopping temporarily, passing through on transportation routes or participating in recreational activities.

<sup>3.</sup> The population at risk is ordinarily or regularly located in the dam-breach inundation zone, whether to live, work or recreate

The BC MFLNRORD has currently assigned the dam a consequences classification rating of "Significant" in terms of the BC Dam Safety Regulation (BC Reg. BC Reg. 40/2016). The "Significant" classification suggests that, in the event of a dam failure, no permanent population would be at risk, or there could be significant loss or deterioration of important fish, or wildlife habitat, or high economic losses affecting infrastructure, public transportation and commercial facilities.

### 6.2 Consequences Classification Review

### 6.2.1 General

Based on the results of the dam break analysis and flood inundation mapping, a review of the consequences classification criteria for the Youbou Creek Dam was conducted as per the CDA 2007 Dam Safety Guidelines considering each of the following loss criteria:

- Loss of life;
- Environmental and cultural losses; and
- Infrastructure and economics.

It can be noted that the classification rating is based on the potential damage above and beyond that caused by a natural event when the dam does not fail.

### 6.2.2 Loss of Life

No dwellings were identified within the High Hazard area and therefore no permanent population is considered to be at risk in the event of dam failure. However, it is anticipated that loss of life could occur due to the presence of a transitory population in the inundation zone, for example persons in vehicles on Youbou Road could be impacted by a flood wave in the event of a breach. The breach would therefore only affect a temporary population and corresponds to a consequences classification of "Significant".

### 6.2.3 Environmental and Cultural Losses

It is understood that salmon have been identified in the lower reaches of Youbou Creek as indicated by data available through iMapBC. This would indicate that potential loss of minor restorable habitat could occur in the event of the dam breach and thus correspond to a consequences classification rating of "Significant" based on environmental losses.

### 6.2.4 Infrastructure and Economic Losses

Notable infrastructure within the downstream flood inundation zone includes multiple residential lots along either side of Youbou Creek, Youbou Road, multiple minor roads within Youbou and the Youbou Fire Hall. The loss of Youbou Creek Dam would represent a loss in the ability for the Youbou water system to store water as part of the continued use of the water supply system. It is noted that most of the properties inundated would be impacted during a 100-year flood even if the dam does not fail. It is also noted that these properties exist in areas of medium or low hazard and thus buildings would likely remain intact.

Neither the BC Dam Safety Regulation 40/2016 nor the 2007 CDA Dam Safety Review Guidelines (2013 Edition) provides guidance with respect to the monetary value of infrastructure and economic losses associated with each consequences classification. Therefore, reference has been made to the Ontario Ministry of Natural Resources Technical Bulletin on Classification and Inflow Design Flood Criteria (August 2011) that provides suggested monetary values for economic losses. Table 6.2 below includes the estimated property losses from the technical bulletin for each equivalent CDA consequences classification.



| Consequences Classification Rating | Economic Losses            |
|------------------------------------|----------------------------|
| Low                                | Not exceeding \$300,000    |
| Significant                        | Not exceeding \$3 million  |
| High                               | Not exceeding \$30 million |
| Very High & Extreme                | In excess of \$30 million  |

| Table 6.2 | Property Loss Criteria based on Consequences Classification |
|-----------|-------------------------------------------------------------|
|-----------|-------------------------------------------------------------|

In the event of a dam breach the most notable impact will be the loss of the local water utility's ability to store water. The flood wave also has the ability to overwhelm the downstream culverts as they would need to convey normal flood waters, discharge from the reservoir, debris and any silt eroded from the reservoir in this scenario. It is further anticipated that these culverts wouldn't be able to pass the flow from this combined effect as the stream is unlikely to have sufficient hydraulic capacity for this estimated 100-year event, as indicated by the flood maps generated. Damage to the culverts will include damage to road crossings disrupting vehicle traffic.

The combination of damage to the culverts and the disruption that it would cause likely represent damages greater than \$300,000 but less than \$3 million. The damages are expected to represent low economic losses affecting infrastructure and services and thus would correspond to a consequences classification of "Significant". It is noted that CVRD has explored options to develop wells to help provide drinking water to Youbou and thus the extent of the losses may be reduced in the event of a breach if CVRD were to pursue this option.

### 6.3 Conclusions

Based on the assessment of the three loss criteria summarised in the sections above, it is recommended that the consequences classification rating of Youbou Creek Dam remain as "Significant". For a dam with a consequences classification of "Significant", the Inflow Design Flood (IDF) is required to be between the 100-year and the 1,000-year event and design seismic hazard is required to be between the 100-year and the 1,000-year event, according to the BC Dam Safety Regulation (BC Reg. 40/2016).

# 7. Failure Modes Assessment

Static failure of concrete dams can be generally divided into two broad categories, namely:

- Sliding failure; and,
- Overturning failure.

The dam's ability to resist sliding and overturning can be compromised by concrete deterioration and distress. Marginal static stability with respect to sliding, overturning and concrete distress may lead to instability under dynamic loading due to additional loads caused by the inertial effects of the dam and reservoir. The dam foundations may also undergo a loss of strength when subjected to dynamic loading.

Although sliding and overturning stability govern the design of concrete dams, most historical problems are associated with the dam foundations. The foundation of a concrete dam must be capable of resisting the applied forces without overstressing the dam or the foundation itself. The horizontal component of the loads acting on the dam tends to make the dam slide in a downstream direction, which results in shear stresses in the dam and along the base of the dam. These stresses may induce concrete shear failure on horizontal planes within the dam, at the base or along the concrete-rock contact, or within the rock foundation. Uplift forces induced by seepage pressure, in combination with the horizontal forces, tend to overturn the dam, which in turn may cause overstressing and crushing of the rock along the downstream toe of the dam. Increased hydrostatic pressures with the foundation stratum and potential seepage paths may result in piping failure of the foundation due to the filling of the reservoir.



Static concrete dam failures and incidents, as compiled by the US Congress on Large Dams (USCOLD) are summarised in Table below.

| Cause                                                  | Fail | ures | Incidents |      | Total |      |
|--------------------------------------------------------|------|------|-----------|------|-------|------|
| Gause                                                  | No.  | %    | No.       | %    | No.   | %    |
| Overtopping                                            | 6    | 31.6 | 3         | 15.8 | 9     | 23.7 |
| Flow Erosion                                           | 3    | 15.8 | 0         | 0    | 3     | 7.9  |
| Foundation Leakage, Piping                             | 5    | 26.3 | 6         | 31.6 | 11    | 28.9 |
| Sliding                                                | 2    | 10.5 | 0         | 0    | 2     | 5.3  |
| Deformation & Deterioration                            | 0    | 0    | 8         | 42.1 | 8     | 21.1 |
| Other Causes e.g. Faulty<br>Construction, Gate Failure | 1    | 5.3  | 2         | 10.5 | 5     | 13.1 |

A modified version of the MFLNRORD Hazard and Failures Modes Matrix (HFMM) to consider other negative human/wildlife interactions beyond terrorism was utilized in assessing the plausible failure modes for Youbou Creek Dam as presented in Appendix D. The likelihood of each hazard and associated failure mode being applicable to Youbou Creek Dam was assessed as either, high, moderate or low as represented by red, orange and green cells respectively in the matrix. It can be noted that the unmodified version uses ratings of applicable versus non-applicable in place of low, medium or high.

For the Youbou Creek Dam, the following failure modes are considered to be plausible:

- **Overtopping** The water level of the dam during both site visits was above the spillway elevation which is approximately 760 mm below the dam crest elevation;
- Deformation & Deterioration Given the age of the dam it is possible that the concrete wall may have undergone some deterioration; and,
- Sliding / Overturning Failure It is possible that the gravity wall may become unstable when subjected to the design flood / seismic forces.

# 8. Geotechnical & Structural Assessment

### 8.1 General

The current assessment is based on the results of the measurements and observations made during the site reconnaissance, available data on the existing dam, published geological data, and Ecora's engineering judgement, rather than a detailed survey and intrusive geotechnical assessment (e.g. drilling, sampling, testing, etc.) and should therefore be considered preliminary in nature. The objective of this approach is to identify potential issues so that any detailed assessment can be tailored to that particular issue.

The following subjects will be discussed in this Section:

- Seepage through the foundation;
- Sliding failure;



- Overturning failure;
- Bearing capacity of the foundation;
- Liquefaction of the foundation and post-earthquake deformation; and,
- Potential for piping through the foundation.

### 8.2 Material Parameters Estimation

### 8.2.1 Concrete Gravity Wall

The following assumptions were adopted in the dam stability assessment for the concrete gravity wall:

- Concrete unit weight: 24 kN/m<sup>3</sup>;
- Concrete compressive strength: 10 MPa; and,
- Concrete is non-porous.

### 8.2.2 Geotechnical Parameters

Geotechnical parameters for the dam foundation have been estimated using a combination of field observations and published data for similar material types.

Based on our site observations and review of published data for similar material types, the following geotechnical parameters as summarized in Table 8.2 were utilized in the various analyses. It is noteworthy that based on site observations, it is considered likely that the gravity wall is founded on bedrock, however there are no design drawings or geotechnical data to verify this conclusion.

| Table 8.2 | Summary of Geotechnical Parameters Used in the Dam Assessment |
|-----------|---------------------------------------------------------------|
|-----------|---------------------------------------------------------------|

| Material               | Geotechnical Parameters |       |           |                        |  |
|------------------------|-------------------------|-------|-----------|------------------------|--|
| Material               | c' (kPa)                | δ (°) | γ (kN/m³) | k <sub>sat</sub> (m/s) |  |
| Bedrock <sup>1,2</sup> | 0                       | 35    | 24        | 3.2x10 <sup>-9</sup>   |  |

1 Concrete-to-bedrock foundation interface friction angle (δ) from Table 24.4 of the CFEM (2006).

2 Saturated hydraulic conductivity (k<sub>sat</sub>) based on lower bound value for fractured igneous and metamorphic rocks, Figure 5.4 of Wyllie & Mah (2004).

c' = Effective Cohesion Intercept

 $\delta$  = Interface Friction Angle

 $\gamma = Unit Weight$ 

k<sub>sat</sub> = Saturated Hydraulic Conductivity

### 8.3 Seepage Through Foundation

At the time of the site reconnaissance there was no obvious seepage flow noted along the dam toe, however it is notable that water was overtopping the spillway at this time which would have made it difficult to assess this.

A steady state seepage analysis was undertaken utilising the built-in Finite Element Analysis (FEA) module within the RocScience Slide v8.017 software. The seepage analysis considered the reservoir level at the spillway elevation



which is consistent with observations during the site reconnaissance. The geometry of the dam has been estimated from measurements obtained during the site reconnaissance. Note that the seepage analysis does not consider flow from concentrated sources such as along the low-level outlet conduit or cracks in the concrete wall or along the base of the gravity wall.

The rate of toe seepage calculated for the dam is summarized in Table 8.3 below. It should be noted that the analyses were undertaken at the dam's maximum height and reduced seepage rates are anticipated where the gravity wall heights are less.

#### Table 8.3 Estimated Rate of Toe Seepage for the Youbou Creek Dam

| Reservoir Level       | Calculated Toe Seepage | Figure No. |  |  |
|-----------------------|------------------------|------------|--|--|
| At spillway elevation | 0.0022 m³/m/day        | 8.3        |  |  |

The flow field from the steady state analysis of the dam is provided on Figure 8.3.

### 8.4 Structural Stability Review

### 8.4.1 Acceptance Criteria

The CDA Dam Safety Guidelines (2007) provide acceptance criteria for the structural stability of concrete gravity dams including the position of the resultant force for rotational modes of failure, the allowable normal compression strength and minimum factors of safety for resistance to sliding for concrete gravity dams as reproduced in Table 8.4.a below.

|                        |                                                                                                                                                                                                                                                                        |                                              | Sliding safety factor |                           |                                                             |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------|---------------------------|-------------------------------------------------------------|--|--|
| Loading<br>combination | Position of resultant force<br>(percentage of base in<br>compression)                                                                                                                                                                                                  | Normal<br>compression<br>stress <sup>1</sup> | Friction<br>only      | Friction an<br>With tests | Friction and cohesion <sup>2</sup> With tests Without tests |  |  |
| Usual                  | Preferably within the kern<br>(middle third of the base: 100%<br>compression); however, for<br>existing dams, it may be<br>acceptable to allow a small<br>percentage of the base to be<br>under 0 compression if all other<br>acceptance criteria are met <sup>3</sup> | <0.3 x f <sub>c</sub> '                      | ≥1.5                  | ≥2.0                      | ≥3.0                                                        |  |  |
| Unusual                | 75% of the base in compression<br>and all other acceptance criteria<br>must be met                                                                                                                                                                                     | <0.5 x fc'                                   | ≥1.3                  | ≥1.5                      | ≥2.0                                                        |  |  |
| Extreme flood          | Within the base and all other acceptance criteria must be met                                                                                                                                                                                                          | <0.5 x fc'                                   | ≥1.1                  | ≥1.1                      | ≥1.3                                                        |  |  |
| Extreme<br>earthquake  | Within the base, except where<br>an instantaneous occurrence of<br>resultant outside the base may<br>be acceptable                                                                                                                                                     | <0.9 x f <sub>c</sub> '                      | Refer to Note 4.      |                           |                                                             |  |  |
| Post-<br>earthquake    | Within the base                                                                                                                                                                                                                                                        | <0.5 x fc'                                   | ≥1.1 <sup>5</sup>     | Refer to Note 6.          |                                                             |  |  |

#### Table 8.4.a Acceptance Criteria for Concrete Gravity Dams

Where fc' = compressive strength of concrete.



1

- 2 Given the significant impact a very small amount of cohesion can have on the shear resistance of small and medium-sized dams, the use of a cohesive bind this level of safety factor should be used with extreme caution.
- 3 It is very important to verify that all possible failure modes have been addressed under a potential cracked base scenario.
- 4 The earthquake load case is used to establish the post-earthquake condition of the dam.
- 5 If the post-earthquake analysis indicates a need for remedial action, this condition should not be allowed to remain for any length of time. Remedial action should be carried out as soon as possible such that factors of safety are increased to the level of the preearthquake conditions.
- 6 Shear resistance based on friction and cohesion needs to be considered carefully, since the analysis surface may not remain in compression throughout the earthquake but may result in cracking, which will change the resistance parameters.

### 8.4.2 Methodology

The stability review of the gravity wall was undertaken based on the gravity method using rigid body equilibrium to compute factors of safety for the static and seismic stability of the concrete gravity dam.

Because the dam has essentially been constructed in a narrow "V-shaped" channel meaning the wall height varies significantly in a short horizontal distance, the average sliding resistance per metre length of dam has been calculated based on the cross-sectional geometry of the dam at its average height and the total area of sliding interface (including the dam side walls) per metre. The geometry of the dam has been estimated from measurements obtained during the site reconnaissance and scaled from site photos. As there are no design drawings or geotechnical data available for the dam wall, the stability analysis conservatively does not consider foundation embedment or shear key contribution to sliding resistance.

The structural stability analysis considers load conditions at the maximum height of the dam. The operating reservoir level was assumed to be at the spillway elevation (consistent with observations during the site reconnaissance) and the flood elevation was assumed to be at the elevation of the dam crest. The height of sediment against the upstream face of the wall measured on site was used in the analysis assuming active earth pressures, an effective saturated unit weight of 8 kN/m<sup>3</sup>, friction angle of 22<sup>o</sup> and a wall interface angle of 18<sup>o</sup> to calculate the silt load.

Due to the assumed low permeability of the bedrock foundation and estimated seepage rate (Section 8.3), uplift pressures beneath the foundation are considered negligible and are therefore not included in the stability analysis with the exception of the post-earthquake load case which assumes a crack has been formed during the earthquake event creating a seepage path and the build up of hydrostatic pressures beneath the dam equal to the hydrostatic head at the upstream and downstream faces.

Pseudo-static stability calculations are based on the 1/1,000 year AEP earthquake design ground motion (EDGM) for a "Significant" consequences dam as recommended by the CDA technical bulletin for Seismic Hazard Consideration for Dam Safety (2007).

A stress analysis for each load case was undertaken utilizing the software program CADAM v.1.4.3 considering loading conditions at the maximum height of the dam to assess whether the normal compression stress at the dam foundation is within the CDA acceptance criteria (Table 8.4.a).

For the purpose of providing a high-level stability analysis and considering the absence of information available on construction of the dam wall, a simplified analysis has been undertaken which does not include the two observed cold joints.

### 8.4.3 Load Combinations

The following load combinations were considered to assess the stability of Youbou Creek Dam:

- Usual Load Combination: Dead + Operating Hydrostatic + Silt
- Flood Combination: Dead + IDF Hydrostatic + Silt



- Earthquake Combination: Dead + Operating Hydrostatic + Silt + Seismic Load
- Post-Earthquake Combination: Dead + Operating Hydrostatic + Silt + Hydrostatic Uplift

Ice load conditions have not been considered due to the location of the dam.

### 8.4.4 Results

The results of the stability analysis are summarized in Table 8.4.b.b and the calculations are provided in Appendix E.

|                                             | Sliding         |                   | Overturning Position of R |                   | esultant    | Maximum                  |                        |
|---------------------------------------------|-----------------|-------------------|---------------------------|-------------------|-------------|--------------------------|------------------------|
| Loading condition                           | CDA Min.<br>FoS | Calculated<br>FoS | CDA Min.<br>FoS           | Calculated<br>FoS | CDA Limit   | Position<br>(% of joint) | Normal<br>Stress (kPa) |
| Static stability, operating reservoir level | ≥1.5            | 1.2               | ≥1.2                      | 1.7               | Middle 1/3  | 84.1                     | 616                    |
| Static stability, flood <sup>1</sup>        | ≥1.1            | 1.0               | ≥1.1                      | 1.3               | Within base | 110.9                    | 809                    |
| Pseudo-static stability <sup>2</sup>        | ≥1.0            | 1.1               | ≥1.0                      | 1.7               | Within base | 86.5                     | 1,229                  |
| Post-earthquake <sup>3</sup>                | ≥1.1            | 0.5               | ≥1.1                      | 0.6               | Within base | 141.9                    | 540                    |

Table 8.4.b Factors of Safety for Stability of the Youbou Creek Dam

1 Does not consider the effect of debris impact during a debris flood which is considered a potential risk for Youbou Creek Dam.

2 The earthquake load case is used to establish the post-earthquake condition of the dam.

3 The post-earthquake case assumes a crack has been formed creating a seepage path and the build up of hydrostatic pressures beneath the dam equal to the hydrostatic head at the upstream and downstream faces.

The results indicate that the factors of safety for sliding and the position of the resultant do not meet CDA criteria for the normal, flood and post-earthquake loading combinations. The earthquake loading combination meets or exceeds minimum CDA criteria. The results of the stress analysis indicate that the maximum normal compression stress at the dam foundation meets or exceeds CDA criteria for all the assessed load combinations.

### 8.5 Gravity Wall Foundation Review

Based on the site observations and the anticipated geological conditions for the site, an allowable bearing capacity of 3 MPa is assumed for the gravity wall foundation as per Table 9.3 of the Canadian Foundation Engineering Manual (CFEM, 2006). The allowable bearing capacity of 3 MPa exceeds the maximum compressive stress for each of the loading conditions considered in the structural stability review as presented in Table 8.4.b above.

### 8.6 Liquefaction and Post-Earthquake Deformation

Based on site observations, the dam is assumed to be founded on bedrock and is therefore considered to have a very low susceptibility to liquefaction and post seismic deformation when subject to strong ground motion.

### 8.7 Internal Erosion (Piping)

### 8.7.1 Internal Erosion Mechanisms

The process of internal erosion through the dam foundation may be broadly divided into four phases, namely:



- Initiation of erosion;
- Continuation of erosion;
- Progression to form a pipe or occasionally cause surface instability (sloughing); and,
- Initiation of a breach.

Erosion can be initiated by four mechanisms, namely:

- Concentrated leaks. Concentrated leaks occur where there is an opening in the foundation through which preferential seepage occurs, with the sides of the opening enlarging through continual erosion by the leaking water. Such concentrated leaks may occur through a crack caused by differential settlement during construction of the dam or its operation, hydraulic fracturing due to low stresses around conduits or the upper parts of the dam due to differential settlement, or through desiccation at high levels of fill. Concentrated leaks can also occur due to collapse settlement of poorly compacted fill around conduits and adjacent to walls. They may also occur due to the action of animals burrowing into levees and small dams and tree roots rotting in dams and forming seepage conduits.
- Backward erosion. Backward erosion piping. Backward erosion piping occurs where critically high hydraulic gradients at the toe of a dam erode particles upwards and internal erosion develops backwards below the dam through small erosion conduits and flow velocity can transport the eroded particles. The presence of backward piping erosion is often exhibited by the manifestation of sand boils at the downstream side of the dam.
- Contact erosion. Contact erosion occurs when a coarse soil such as a gravel is in contact with a fine soil and flow parallel to the contact in the coarse soil erodes the fine soil.
- Suffusion. Suffusion occurs when water flows through widely graded or gap graded (internally unstable) non-plastic soils, with the small particles of soil transported by the seepage flow through the pores of the coarse particles. Poorly graded soils such as non-plastic glacial tills are more vulnerable to suffusion. Suffusion results in an increase in permeability, greater seepage velocities, and potentially higher hydraulic gradients, potentially accelerating the rate of suffusion. Segregation of broadly or gap graded non-plastic soils during dam construction may create layers which are internally unstable even though the average grading of the soil is internally stable.

### 8.7.2 Piping Potential

As it is assumed that Youbou Creek Dam is founded on bedrock, it is considered to have an extremely low susceptibility to piping failure.

#### 8.8 Debris Flow, Debris Flood and Flood Hazard Assessment

Debris flow, debris flood and flood hazard were studied for the Youbou Creek watershed and assessed using the Melton ratio (Wilford et al., 2004). The Melton ratio was developed to determine whether a stream is likely to be subject to a debris flow, debris flood or a flooding hazard. Debris flows and debris floods represent a significant risk to the dam as debris carried by either a debris flow or debris flood could be sufficient to damage the culverts upstream of the dam and the dam itself.



The sedimentation basin above the dam is intended to capture sediment and debris carried by the flow before reaching the dam, however a large amount of sediment has been observed to have reached the reservoir. The dam itself is also acting as a detention basin, capturing the remaining sediment suspended in the flow. A debris flow or debris flood is likely to overwhelm both of these and will likely pose a risk to the safety of the dam.

Debris flows are very rapid to extremely rapid flows of fully saturated non-plastic (PI < 5% in sand and finer fractions) debris in steep channels (Hungr et al., 2001) that have considerable momentum and high destructive potential with peak discharges of up to 40 times calculated clear water flows. Key characteristics of debris flows include the presence of an established channel or regular confined path and a certain degree of rough sorting that tends to bring the largest clasts close to the flow surface producing inversive grading. Geomorphological indications of channels susceptible to debris flow generation include signs of scour along the gully and the presence of a well-defined depositional cone or fan built up by a number of separate events along the same path.

Debris floods are characterized as sediment-charged flood events with sediment concentrations between 20% and 47% by volume (Hungr et al., 2001) and peak discharges of up to 2 times the calculated flows. Debris floods may be triggered by extreme precipitation events, or by the blockage (and subsequent release) of creek flows impounded by landslides or debris flows entering the creek channel further upstream.

The Melton Ratio is calculated by the equation below:

Melton Ratio = Watershed relief (km)/ $\sqrt{(Watershed Area (km^2))}$ 

Watershed relief is the difference in elevation between the top and bottom of the watershed.

Table 8.8 shows the typical ranges of the ratio associated with each hazard type.

#### Table 8.8 Typical Hazard for Melton Ratios

| Hazard       | Melton Ratio                                                                    |
|--------------|---------------------------------------------------------------------------------|
| Flood        | < 0.3 for all watershed lengths                                                 |
| Debris Flood | 0.3 to 0.6 for all watershed lengths $>$ 0.6 for watershed lengths $\ge$ 2.7 km |
| Debris Flow  | > 0.6 for watershed lengths < 2.7 km                                            |

Note that creeks classified as subject to debris flows may also be subject to floods and debris floods. Those that are subject to debris floods may also be subject to floods but aren't typically subject to debris flows. Those that are classified as subject to floods are typically not subject to debris floods or debris flows.

The Melton ratio calculated for Youbou Creek was 0.6. Plotted against an approximate watershed length of 2 km indicates that the catchment sits on the boundary between debris flows and debris floods as seen in Figure 8.8. This indicates that the catchment could be susceptible to debris floods and debris flows with the flow volumes significantly exceeding those calculated in the hydrotechnical assessment.

# 9. Hydrotechnical Assessment

The following sections provide a description of the study watershed, a review of available climatic and hydrometric data, and a summary of the method used to develop the Inflow Design Flood (IDF).

#### 9.1 Watershed

Youbou Creek Dam is situated approximately 350 m up Youbou Creek as measured from Youbou Road and has a drainage area of approximately 209 ha based on existing community watershed boundaries. The inflows to the



reservoir are rainfall and snowmelt within the catchment area. The median basin elevation of the Youbou Creek Dam watershed was estimated to be approximately 610 m and the area consists mostly of steep forested slopes. The boundary of the Youbou Creek Dam watershed is presented on Figure 9.1.

## 9.2 Climatic and Snow Course Data

A number of climate stations operated by the Meteorological Service of Canada (MSC) are located within the study region. In view of their proximity to the project site, elevation and length of record, the following stations were considered to have climatic data that was useful in determining the climate conditions at the project site as summarized in Table 9.2.a with station locations presented on Figure 9.2.

| Station Name           | Station No. | Elevation<br>(m) | Period of<br>Record | Data Type | Rainfall IDF*<br>Curve | Distance to<br>Site (km) |
|------------------------|-------------|------------------|---------------------|-----------|------------------------|--------------------------|
| Lake Cowichan          | 1012055     | 171              | 1983 – 2002         | Daily     | Yes                    | 13.2                     |
| Nanaimo A              | 1025370     | 28               | 1985 – 2012         | Daily     | Yes                    | 32.0                     |
| North Cowichan         | 1015628     | 45               | 1982 - 2005         | Daily     | Yes                    | 36.7                     |
| Victoria Intl A        | 1018621     | 19               | 1965 – 2013         | Daily     | Yes                    | 62.7                     |
| Nanaimo City Yard      | 1025370     | 114              | 1980 - 2007         | Daily     | Yes                    | 39.6                     |
| Cowichan Lake Forestry | 1012040     | 177              | 1981 – 2010         | Daily     | No                     | 8.5                      |
| Shawnigan Lake         | 1017230     | 159              | 1981 – 2010         | Daily     | No                     | 50.0                     |
| Port Alberni A         | 1036206     | 2                | 1969 – 1993         | Daily     | Yes                    | 61.2                     |
| Port Renfrew           | 1016335     | 10               | 1973 – 1982         | Daily     | Yes                    | 32.8                     |

#### Table 9.2.a Regional Climate Stations

\*Intensity – Duration – Frequency data

According to the 1981 to 2010 Climate Normals data on the Environment Canada website, the mean annual precipitation at the Lake Cowichan Station, which is located at the east end of Cowichan Lake, is 2,047.5 mm (1,975.6 mm rainfall and 72.0 cm snowfall). Rainfall occurs throughout the year with 80% of the rainfall occurring between the months of October and March. Snowfall mainly occurs in the winter months of December, January and February, snowfall has been recorded between the months of October and May. Mean daily temperatures range from 2.5°C in December to 18.1°C in August. The rainfall-frequency data for the Lake Cowichan, Nanaimo A and North Cowichan stations are shown in Table 9.2.b and the 24-hour rainfall totals for various return periods were obtained from IDF curves available through the MSC. The stations Victoria Intl A, Nanaimo City Yard, Cowichan Lake Forestry, Shawnigan Lake, Port Alberni A and Port Renfrew were included for the purposes of determining a temperature elevation relationship of the area to be applied in the snowmelt calculation. The 500-year, 1000-year and 5000-year 24-hour rainfall totals were obtained by extrapolation and adjusted to apply to the project site based on the elevation-rainfall relationship for the regional climate stations in Table 9.2.b.

| Table 9.2.b | Rainfall Intensity Frequency Data | at Regional Climate Stations |
|-------------|-----------------------------------|------------------------------|
|-------------|-----------------------------------|------------------------------|

| Return Period (Years) |               | 24-Hour Rainfall Total (mm) |                |
|-----------------------|---------------|-----------------------------|----------------|
| Return Period (rears) | Lake Cowichan | Nanaimo A                   | North Cowichan |
| 2                     | 93.6          | 55.5                        | 57.8           |
| 5                     | 110.7         | 69.7                        | 70.8           |
| 10                    | 122.1         | 79                          | 79.4           |
| 25                    | 136.4         | 90.9                        | 90.3           |
| 30                    | 138.9         | 92.9                        | 92.2           |
| 50                    | 147.2         | 99.8                        | 98.5           |
| 100                   | 157.6         | 108.4                       | 106.5          |
| 500                   | 184.5         | 130.6                       | 126.9          |
| 1000                  | 195.8         | 139.9                       | 135.5          |
| 5000                  | 221.9         | 161.5                       | 155.3          |



The River Forecast Centre of the BC Ministry of Environment has a number of snow course and snow pillow sites available on Vancouver Island. The station closest to the project site, by distance and elevation, is the Jump Creek snow pillow station (at an elevation of 1160 m) located north of the dam. The information for this automatic snow pillow station is presented in Table 9.2.c.

#### Table 9.2.c Regional Snow Pillow Station

| Station Name                   | Station No. | Elevation | Period of Record | Distance to Site |
|--------------------------------|-------------|-----------|------------------|------------------|
| Jump Creek Snow Pillow Station | 3B23P       | 1160 m    | 1995 – 2011      | 12.3 km          |

The average snow water equivalents for the period of record at the Jump Creek snow pillow station are summarized in Table 9.2.d.

#### Table 9.2.d Average Snowpack Data for Jump Creek Snow Pillow

| Month | Snow Water Equivalent (mm) |
|-------|----------------------------|
| Jan   | 580.6                      |
| Feb   | 836.1                      |
| Mar   | 1070.2                     |
| Apr   | 1257.5                     |
| May   | 1015.6                     |
| June  | 308.5                      |

The data shows the peak average snow water equivalent (1257.5 mm) occurs in April. Note that this station is approximately 920 m higher than Youbou Creek Dam, so use of this data is considered conservative.

## 9.3 Hydrometric Data

There is no long-term streamflow data available within the Youbou Creek watershed. Regional hydrometric data was obtained from the Water Survey of Canada to characterize the hydrology of the study area. The regional hydrometric stations used in this study are listed in Table 9.3 with station locations presented on Figure 9.3.

#### Table 9.3 Regional Hydrometric Stations

| Station ID                      | Station Name | Drainage Area (km <sup>2</sup> ) | Period of Record | Status |
|---------------------------------|--------------|----------------------------------|------------------|--------|
| Cottonwood Creek Headwaters     | 08HA072      | 3.81                             | 1998 – 2018      | Active |
| Harris Creek Near Lake Cowichan | 08HA070      | 28.0                             | 1997 – 2018      | Active |

# 9.4 Determination of Inflow Design Flood

#### 9.4.1 General

Based on a review of dam consequences classification discussed in Section 6.2, Youbou Creek Dam should be classified as a "Significant" consequences dam in accordance with the 2007 Canadian Dam Association (CDA) Dam Safety Guidelines (2013 Edition). The CDA guidelines for an Inflow Design Flood (IDF) for a "Significant" consequences dam is between the 100-year event and the 1000-year event. For the study watershed, peak runoffs are generated either by major rainstorms alone or by rain-on-snow events.



## 9.4.2 Determination of the 1,000-Year Flood

Two methods were used to determine the 1000-year flood: a rainfall-runoff approach and a regional analysis. The rainfall-runoff approach refers to the development of a hydrologic model to determine the runoff hydrograph at the site, using precipitation and snowmelt as inputs. The regional analysis involves frequency analyses of regional hydrometric data and determination of the relationship between peak discharge and size of drainage area. The following paragraphs further illustrate the methodology and present the results of the two approaches.

#### **Rainfall-Runoff Approach**

The 1000-yr 24-hour rainfall totals were calculated using a regression analysis from available 24-hour rainfall data at the Lake Cowichan, Nanaimo A and North Cowichan stations. The elevations and the magnitude of the 1000-year rainfall events are included in Table 9.4.a.

| Table 9.4.a 1000-Year 24-ł | Hour Rainfall |
|----------------------------|---------------|
|----------------------------|---------------|

| Station Name   | Elevation (m) | 1000-Year 24-Hour Rainfall (mm) |
|----------------|---------------|---------------------------------|
| Lake Cowichan  | 171           | 195.8                           |
| Nanaimo A      | 28            | 139.9                           |
| North Cowichan | 45            | 135.5                           |

A relationship between 1000-year 24-hour rainfall and elevation was developed using the above results to calculate the corresponding rainfall at the project site. The calculated 1000-year 24-hour rainfall at the site was estimated to be 381 mm.

To take into account the snowmelt occurring during a rain-on-snow event, the following equation was applied (Gray, 1973):

For heavily forested regions (60 - 100%)

M = (0.074 + 0.007\*P)\*(Ta - 32) + 0.05

where

M = snowmelt (in/day);

P = precipitation (in); and

Ta = temperature (°F).

For the 1000-year flood, the 1000-year 24-hour rainfall and the average daily temperature from January to March was used in estimating the daily snowmelt rate. The average value of the mean daily temperature (4.3°C) at Youbou Creek Dam was calculated by defining a relationship for average temperature based on elevation for the above referenced climate stations and using that relationship to estimate the temperature at the Youbou Creek Dam. The average daily snowmelt during a 1000-year rainfall event was determined to be 36.4 mm/day. This daily snowmelt is considered reasonable when compared to the Jump Creek snow pillow station data because there would be enough snow to supply the calculated amount of snowmelt. The combination of the 1,000-year 24 hour precipitation and snowmelt amounts to 417 mm.

The hydrologic model used in the runoff analysis was HEC-HMS version 4.0, developed by the U.S. Army Corps of Engineers. The US Soil Conservation Service (SCS) unit hydrograph method was applied to determine the runoff hydrograph from the 1000-year 24-hour rainfall combined with the average daily snowmelt rate. The SCS Type Ia distribution was selected to define the distribution of rainfall over 24 hours. The average daily snowmelt was evenly distributed and combined with the rainfall for the storm of interest. In general, the Youbou Creek catchment area consists of heavily forested areas in good condition. Soil Type B, representing soil with a well-drained and moderately well-drained infiltration rate, was chosen for the study area. Antecedent moisture condition III (saturated



conditions) was assumed. A curve number (CN) of 79 was estimated for the catchment area. Slopes, elevations and channel lengths were taken from GIS maps to estimate the time of concentration for the catchment.

The peak inflow to Youbou Creek Dam during the 1000-year return period flood was estimated to be 42.3 m<sup>3</sup>/s.

#### **Regional Analysis**

A regional hydrological analysis was carried out to provide an alternative estimate of the 1000-year flood inflow to Youbou Creek Dam. Flood frequency analyses were conducted for the selected regional hydrometric stations using the HYFRAN software Version 2.2. Four different frequency distributions: Gumbel, the Three Parameter Lognormal, Weibull and the Log Pearson Type III distributions, were applied to the data. The maximum instantaneous flows were plotted against drainage area and a regression equation was fitted to obtain the 1000-yr flows for each selected hydrometric station. The peak flow estimates for three return periods at the project site are tabulated in Table 9.4.b.

| Return Period (Years) | Flood Estimates (m3/s) |
|-----------------------|------------------------|
| 10                    | 9.8                    |
| 30                    | 10.2                   |
| 50                    | 11.3                   |
| 100                   | 13.7                   |
| 200                   | 14.7                   |
| 500                   | 14.5                   |
| 1000                  | 17.0                   |
| 5000                  | 17.8                   |

#### Table 9.4.b Regional Analysis Peak Flood Estimates

#### 1000-year Flood

The 1000-year peak flood estimate obtained from the regional analysis is lower than that from the hydrologic model. However, most of the available regional stations with data sets extensive enough for statistical analysis are from larger watersheds than that of Youbou Creek. As larger watersheds have a greatly reduced peaking factor and significantly larger time of concentration, it is likely that this method underestimates flooding within the watershed. Also, the data sets within the regional analysis mostly have too short of period of records for accurate statistical assessment of a 1000-year event. The HEC-HMS hydrologic model was based on site specific conditions such as soil type and local climate data, making this method preferred as well as conservative. Therefore, the 1000-year peak inflow to Youbou Creek Dam was determined as 42.3 m<sup>3</sup>/s.

## 9.4.3 Inflow Design Flood

The rainfall-runoff method is considered appropriate for developing the IDF for Youbou Creek Dam as it accounts for site specific conditions such as soil type and local climate data.

As indicated earlier, the 1000-year flood event was determined to be 42.3 m<sup>3</sup>/s. The 100-year flood was furthered determined with the above methodology to provide the boundary of the inflow event for a "Significant" consequences dam. The CDA guidelines recommend that the IDF for a "Significant" consequences dam should be between 100-year and the 1,000-year event (CDA 2007).

The peak inflow to Youbou Creek Dam during the IDF was determined to be between 34.2 m<sup>3</sup>/s (100-year event) and 42.3 m<sup>3</sup>/s (1,000-year event). The hydrographs for calculated return periods are shown on Figure 9.4.



# 9.5 Flood Routing and Freeboard Determination

A hydrological model was developed to simulate water levels in the Youbou Creek reservoir and determine the peak outflow during the IDF. The following sections provide a summary of the methodology and results of this analysis.

## 9.5.1 Volume-Elevation Relationship

The volume-area-elevation relationship for Youbou Creek Dam was estimated using measurements at the time of the field reconnaissance. The reservoir was observed to have a large volume of sediment built up behind the dam, so the current storage capacity is limited. The area of the reservoir at the spillway was estimated at 460 m<sup>2</sup> with a storage capacity of 1,770 m<sup>3</sup> if it is assumed that the reservoir is clear of sediment. The estimated storage capacity should be treated as approximate only as the numbers used in the calculation are based on limited measurements. The estimated area-elevation-storage relationship is illustrated in Figure 9.5a.

There is a sedimentation basin above the dam, however it is unable to trap all the sediment coming from upstream.

# 9.5.2 Rating Curve

As part of the field reconnaissance completed by Ecora the spillway crest length was determined to be 2.38 m with a height of 0.76 m. The geodetic elevation of the spillway is currently unknown as Ecora was unable to get accurate survey data during the field reconnaissance. The rating curve for the spillway was estimated based on the following equation (Smith, 1995):

For broad crested weir flow:

 $Q = CLH^{1.5}$ 

Where:

 $Q = Discharge (m^3/s);$ 

C = Discharge coefficient;

L = Effective spillway crest length (m); and

H = Head above spillway crest (m).

The concrete dam crest will also act as a weir if the flood overtops the dam and it has likely done so in the past as evidenced by wear along the crest of the dam. The rating curve developed for the Youbou Creek Dam spillway is shown on Figure 9.5b. The capacity of the spillway, to the dam crest, is 2.7 m<sup>3</sup>/s.

# 9.5.3 Flood Routing Results

The flood routing was performed using the HEC-HMS model, which includes a routing component for flows through reservoirs. The starting water surface elevation was assumed to be at the spillway crest elevation and for conservative results it was assumed that the low level outlets were not operating. It is noted that due to large sediment deposits within the reservoir it is reasonable to expect that the low level outlets would be ineffective at discharging any remaining storage volume. The results of the HEC-HMS flood routing during the IDF corresponding to the "Significant" classification as well as other notable flows are summarized in Table 9.5. Figure 9.5c represents the results of the flood routing graphically.



| Consequences<br>Classification/<br>Return Period | Spillway<br>Weir Crest<br>Local<br>Elevation<br>(m) | Initial<br>Reservoir<br>Level (m) | Peak<br>Reservoir<br>Level (m) | Peak<br>Storage<br>(1000 m³) | Peak<br>Inflow<br>(m³/s) | Peak<br>Outflow<br>(m³/s) | Dam Crest<br>Local<br>Elevation<br>(m) | Available<br>Freeboard<br>(m) |
|--------------------------------------------------|-----------------------------------------------------|-----------------------------------|--------------------------------|------------------------------|--------------------------|---------------------------|----------------------------------------|-------------------------------|
| 30-year                                          | 7.74                                                | 7.74                              | 9.37                           | 0.8                          | 30.2                     | 30.2                      | 8.5                                    | -0.9                          |
| 50-year                                          | 7.74                                                | 7.74                              | 9.40                           | 0.8                          | 32.0                     | 31.9                      | 8.5                                    | -0.9                          |
| 100-year                                         | 7.74                                                | 7.74                              | 9.45                           | 0.8                          | 34.2                     | 34.2                      | 8.5                                    | -1.0                          |
| 500-year                                         | 7.74                                                | 7.74                              | 9.57                           | 0.9                          | 39.9                     | 39.9                      | 8.5                                    | -1.1                          |
| Significant<br>(1000-year)                       | 7.74                                                | 7.74                              | 9.62                           | 0.9                          | 42.3                     | 42.3                      | 8.5                                    | -1.1                          |
| 5000-year                                        | 7.74                                                | 7.74                              | 9.73                           | 1.0                          | 47.8                     | 47.8                      | 8.5                                    | -1.2                          |

#### Table 9.5 Results of Flood Routing

The results above indicate that for the "Significant" consequences storm that there is overtopping of the dam. The reservoir level response to the IDF is plotted in Figure 9.5d. Peak outflows would reach between 34.2 m<sup>3</sup>/s and 42.3 m<sup>3</sup>/s for storm events for the "Significant" consequences storm. Note that the results for other return periods are included for comparison only. as it has been established the "Significant" is the appropriate classification.

## 9.5.4 Wind and Wave Considerations

Wind and wave analyses were not undertaken for this dam as the concrete structure is considered non-erodible and thus should be able to resist overtopping without serious damage. The CDA Guidelines (2007) indicate that concrete dams may be permitted to have freeboard requirements reduced or overtopping may be allowed provided that the integrity of the dam, its abutments and any ancillary structures is not compromised.

### 9.5.5 Freeboard Assessment

The flood routing exercise described above determined that during the IDF event the dam crest will be overtopped. Given that Youbou Creek Dam is a concrete gravity dam, it should be able to resist overtopping without serious damage and given the wear pattern on the dam, it has likely overtopped in the past. The CDA Guidelines (2007) indicate that concrete dams may be permitted to have the freeboard requirement reduced or overtopping may be allowed provided that the integrity of the dam, its abutments and any ancillary structures is not compromised. It can be noted that safe access to control structures may not be maintained in the event of an overtopping event due to the placement of control valves below the dam crest.

# 10. Dam Safety Management System

### 10.1 General

Dam safety management can be generally described in terms of five components (CDA Guidelines 2007):

- Owner commitment to safety;
- Regular inspections and Dam Safety Reviews with proper documentation and follow up;
- Implementation of effective Operations, Maintenance and Surveillance (OMS) practices;
- Preparation of effective Emergency Preparedness Plan; and
- Management of Public Safety.



A general schematic of a dam safety management system is presented in Figure 10.1. Ecora has assessed the dam safety management system in place for the Youbou Creek Dam and the results of this assessment are presented in this section.

## 10.2 Operations, Maintenance and Surveillance Manual

An Operations, Maintenance and Surveillance (OMS) Manual is a means to provide both experienced and new staff with the information they need to support the safe operation of a dam (CDA 2007). It is Ecora's understanding that currently Youbou Creek Dam does not have an Operations, Maintenance and Surveillance Plan.

## 10.3 Dam Emergency Plan

The objective of a Dam Emergency Plan (DEP) is to establish a formal internal document that operators of a dam should follow in the event of an emergency at the dam. The DEP outlines the key emergency response roles and responsibilities, in order of priority, as well as the required notifications and contact information. The DEP also provides basic information that allows for the planning and coordination by municipalities, Royal Canadian Mounted Police, Provincial agencies, utility owners, transportation companies and other parties that would be affected by a major flood (CDA 2007). The DEP is intended to combine the requirements of both the Emergency Response Plan (ERP) and Emergency Preparedness Plan (EPP) based on the BC Dam Safety Regulation (40/2016).

It is Ecora's understanding that currently Youbou Creek Dam does not have a DEP.

## 10.4 Public Safety Management

The CDA released Guidelines for Public Safety around Dams in 2011. Public safety around dams is an emerging topic in the dam safety community around the world, which in Canada is led by the CDA.

Dam owners are responsible for managing the public safety risks caused by a dam, as far upstream and downstream as the owner has property rights. Beyond the property the dam owner may have additional responsibilities to assess specific locations where the hazards are known by the owner to result directly from the dam or its operation and to inform the public and other affected property owners of these hazards. In most jurisdictions in Canada, due diligence is the test that the dam owner has taken reasonable and prudent precautions to protect the public. The implementation of a Public Safety Plan (PSP), records of decisions made, and activities performed to manage public safety at the dam, provide evidence of due diligence (CDA 2011).

During Ecora's inspection of Youbou Creek Dam it was noted that there is limited restriction on public interaction with the dam, with some evidence of ground disturbance or vandalism noted. Currently there is no PSP in place for this facility.

# 10.5 Dam Safety Expectations Assessment

## 10.5.1 General

The British Columbia Ministry of Forests, Lands, Natural Resource Operations & Rural Development (MFLNRORD) has developed a sample check sheet of Dam Safety Expectations, Deficiencies and Priorities (May 2010) which is based on the BC Hydro Hazards and Failures Modes Matrix and the 2007 CDA Guidelines. A dam safety expectations assessment has been undertaken for Youbou Creek Dam using the sample check sheet prepared by the MFLNRORD as presented in Appendix F.



The Dam Safety Expectations are divided into five categories:

- Dam Safety Management System
- Operations, Maintenance and Surveillance
- Emergency Preparedness
- Dam Safety Review
- Dam Safety Analysis

A brief summary of the results of the Dam Safety Expectations is discussed below.

#### 10.5.2 Dam Safety Analysis

There are three actual deficiencies and one non-conformance.

Deficiencies:

- Catchment may be susceptible to the formation of debris flows and debris floods and thus the dam may not be adequately protected.
- Spillway is undersized and will overtop in extreme flow events.
- Dam does not have adequate freeboard as the spillway is undersized and will overtop in extreme flow events.

Non-conformances:

 No engineering drawings of the dam structure were available. Limited inspection and operational records are available.

#### 10.5.3 Operations, Maintenance and Surveillance

There is one actual deficiency and 17 non-conformances.

Deficiencies:

 Low level outlets at the base of the dam will be difficult to access if the dam is spilling or being overtopped.

Non-conformances:

• All non-conformances could be addressed with the completion of an OMS Plan that includes detailed operating procedures, testing records, training records and surveillance documentation.

#### 10.5.4 Emergency Preparedness

There are no deficiencies and 10 non-conformances in this category which can be addressed by documenting training and by the completion of an DEP.



## 10.5.5 Dam Safety Review

There are no deficiencies and non-conformances in this category. By commissioning this Dam Safety Review the Cowichan Regional District conforms to the dam safety expectations for this category.

### 10.5.6 Dam Safety Management

There are no deficiencies and seven non-conformances in this category all of which could be addressed with a completion of a OMS Manual and a DEP.

# 11. Risk Assessment

#### 11.1 General

As part of the DSR, the NDMP Risk Assessment Information Template (RAIT) was completed by Ecora in accordance with NDMP and has been attached in Appendix G. The assessment process allows stakeholders to identify and prioritize the risks that are likely to create the most disruption to them. The assessment also helps decision-makers to identify and describe hazards and assess impacts and consequences based upon the vulnerability or exposure of the local area, or its functions to that hazard.

The risk assessment approach aims to understand the likely impacts of a range of emergency scenarios upon community assets, values and functions. As such, risk assessments provide an opportunity for multiple impacts and consequences to be considered enabling collaborative risk treatment plans and emergency management measures to be described.

The outputs of the assessment process can be used to better inform emergency management planning and priority setting, introduce risk action plans, and ensure that communities are aware of and better informed about hazards and the associated risks that may affect them.

# 11.2 Risk Assessment Information

Descriptions of the risk ranking, and definitions associated with the five-point scale used to define the impacts are presented below. The impact risk rating definitions are based on qualitative and quantitative elements referenced from a diverse array of risk and resilience methodologies and external risk management models.

#### **People and Societal Impacts**

It is a priority at the municipal, provincial and federal levels to protect the health and safety of Canadians. Impacts on people are considered pertinent in the assessment process given that natural hazards can result in significant societal disruptions such as evacuations and relocations as well as injuries, immediate deaths, and deaths resulting from unattended injuries or displacement. As such, the following impact criteria will be assessed on a 1 to 5 scale:

- number of fatalities;
- ability for local healthcare resources to address injuries; and,
- number of individuals displaced and duration of displacement.



#### **Environmental Impacts**

A priority for municipal, provincial and federal governments is to protect Canada's natural environment for current and future generations. As such, environmental impacts were included in the assessment to measure the risk event in relation to the degree of damage and predicted scope of clean-up and restoration needed following an event. The definitions consider the direct and indirect environmental impacts within the defined geographic area on a 1 to 5 scale, and include an assessment of air quality, water quality and availability (exclusive to on land and in-ground water), and various other nature indicators.

#### **Local Economic Impacts**

There may be impacts on the local economy that are the result of a risk event occurring. Local economic impacts attempt to capture the value of damages or losses to local economically productive assets, as well as disruptions to the normal functioning of the community/region's local economic system. The definitions consider the local economic impacts within the defined geographic area on a 1 to 5 scale and should consider direct and indirect economic losses (i.e. productivity losses, capital losses, operating costs, financial institutions and other financial losses).

#### Local Infrastructure Impacts

There are several local infrastructure components, as per a variety of risk assessment and management sources and guidelines that are fundamental to the viability and sustainability of a community/region. Those components that appear most pertinent to assess impacts resulting from natural hazards, such as floods, include: energy and utilities; information and communication technology; transportation; health, food and water; and safety and security. At a minimum, an assessment of the aforementioned components must be completed, defined on a 1 to 5 scale, and should consider both direct and indirect impacts.

#### **Public Sensitivity Impacts**

Public sensitivity was included as an impact criterion given that credibility of governments is founded on the public's trust that all levels of government will respond effectively to a disaster event. The definitions consider the impacts on public visibility on a 1 to 5 scale and include an assessment of public perception of government institutions, and trust and confidence in public institutions.

### 11.3 Risk Assessment Summary

From the impact categories considered, the following principal impacts were noted:

- The primary risk event is the breach of Youbou Creek Dam due to structural failure due to hydrostatic pressures generated by a 1 in 30-year flood event.
- In the event of a dam breach, significant damage to public infrastructure would occur including damage to the following"
  - Dam and sedimentation basin access road,
  - Youbou Road,
  - Side streets subject to surface flooding,
  - Arbutus Park
  - Bus stop for Youbou connector (Bus Number 20), and



- Youbou Fire Department.
- The event would most likely occur in the cold part of the year (October to March) as most rainfall falls within these months.

#### 11.4 Confidence Levels

The risk assessment process requires confidence levels to be defined, particularly since confidence levels can vary considerable depending on the availability of quality data, availability of relevant expertise to feed the risk assessment process, and the existing Canadian body of knowledge associated with specific natural hazards and natural disaster events.

Confidence levels have been defined using letters ranging from A to E, where 'A' is the highest confidence level and 'E' is the lowest. This approach was taken to ensure all applicants can determine the confidence in their risk assessment in a simplified, straightforward manner, which also ensures that a more consistent representation of confidence levels is being determined across all submissions.

The level of confidence for this assessment is considered to be "C", based on the level of assessment completed to date.

# 12. Observations and Conclusions

The conclusions reached during the DSR of Youbou Creek Dam are presented as follows for each area of review:

#### 12.1 Background Review

- Limited background information is available for this dam and does not include record drawings for the dam structure.
- The dam was constructed at some point prior to 1959.
- No obvious signs of historical or current slope instability of the reservoir side slopes were observed in the review of available photographs.

#### 12.2 Site Reconnaissance

- The reservoir and sedimentation basin were both filled with sediment at the time of the site reconnaissance.
- Vegetation is currently growing out of the face of the dam.
- Concrete is showing significant wear on the downstream face.

#### 12.3 Consequences Classification Review

 The dam breach inundation mapping indicates that a total area of approximately 1.05 km<sup>2</sup> would be flooded in the event of a dam breach during a 100-year event, potentially impacting Youbou Road and properties downstream.



 Dam breach analysis and inundation mapping results confirmed that the consequences classification for Youbou Creek Dam should be maintained as "Significant". The CDA guidelines recommend an Inflow Design Flood (IDF) for a "Significant" consequences dam to be between the 100-year and the 1,000-year event.

#### 12.4 Failure Mode Assessment

 The plausible failure modes of the dam are; overtopping as the spillway may become blocked with debris, deformation & deterioration due to age and sliding/overturning failure from the design flood or seismic forces.

#### 12.5 Geotechnical & Structural Assessment

- Results of the stability assessment indicate that the dam does not meet CDA structural stability criteria for normal, flood and post-earthquake loading conditions. The earthquake load combination meets or exceeds minimum CDA criteria.
- The allowable bearing capacity of the foundation is adequate to resist the maximum compressive stress for normal, flood, earthquake and post-earthquake loading conditions.
- The dam foundation is considered to have a very low susceptibility to liquefaction and post seismic deformation when subject to strong ground motion.
- The dam foundation is considered to have an extremely low susceptibility to piping failure.
- The calculated Melton Ratio for Youbou Creek was determined to be 0.6 which indicate that the creek may be susceptible to the formation of debris flows, debris floods and floods.

#### 12.6 Hydrotechnical Assessment

- The peak inflow to Youbou Creek Dam during the IDF associated with the recommended "Siginificant" consequences classification is between 34.2 m<sup>3</sup>/s (100-year) and the 42.3 m<sup>3</sup>/s (1,000-year). Because of the absence of significant storage, peak outflows are the same.
- The spillway does not have adequate capacity to pass the IDF associated with the "Significant" consequences classification.
- The capacity of the spillway is estimated to be 2.7 m<sup>3</sup>/s.
- The flood routing exercise determined that during the IDF event the dam crest will be overtopped. Given that Youbou Creek Dam is a concrete gravity dam, it should be able to resist overtopping without serious damage and given the wear pattern on the dam, it has likely overtopped in the past.

### 12.7 Dam Safety Management

 An Operations, Maintenance and Surveillance Manual and a Dam Emergency Plan need to be prepared for Youbou Creek.



#### 12.8 Risk Assessment

- The dam does not meet current CDA requirements in terms of sliding and overturning and thus failure of the dam may occur due to conditions expected over a 30-year period corresponding to an NDMP rating of 1.
- A preliminary estimate of reconstruction costs as a result of a dam breach is between \$300,000 and \$3 million based on the scope of the infrastructure impacted.

# 13. Recommendations

The recommendations that have been developed during this DSR of Youbou Creek Dam are presented as follows for each area of review. Priorities (Low, Medium, High or Very High) are given in parentheses. Low, medium, high and very high priority recommendations should be addressed within 5, 3, 1 and 0.5 year(s) respectively.

### 13.1 Background Review

 As no record drawings are available for the dam structure, a detailed topographical survey of the dam embankment, abutments, outlet and spillway channel should be commissioned to verify existing dam geometry, confirm critical dam elevations and to assist in any future engineering assessments (High).

#### 13.2 Site Reconnaissance

 If CVRD would like to continue to use the dam for drinking water purposes it is recommended that the sediment be removed from the reservoir to restore the available storage capacity (Low).

#### 13.3 Consequences Classification Review

• There are no recommendations in this area of the review.

#### 13.4 Failure Mode Assessment

There are no recommendations in this area of the review.

#### 13.5 Geotechnical and Structural Assessment

- CVRD should commission a design study to address the major deficiencies in the Youbou Creek Dam, namely to increase its resistance to sliding and overturning to meet CDA stability criteria or alternatively decommission the dam. It is envisioned this would result in a recommendation to remediate the existing dam that would likely include the design of a reinforced concrete toe buttress to increase the stability of the gravity wall (Very High).
- If it is chosen to remediate the existing dam, it is recommended that areas of concrete deterioration particularly in vicinity of cold joints are addressed.



 Remediation or decommissioning of the existing dam should consider the potential impacts of debris floods and debris flows as the existing sediment basin and reservoir provides some mitigation of this hazard to the community of Youbou.

#### 13.6 Hydrotechnical Assessment

 Extra spillway capacity should be added to the dam to allow for passage of the IDF event or the dam should be strengthened so that the dam would be able to resist forces generated by an overtopping event during the IDF (High).

#### 13.7 Dam Safety Management

- An Operation, Maintenance and Surveillance Manual and a Dam Emergency Plan need to be prepared for Youbou Creek Dam (High).
- The dam should either be decommissioned or rehabilitated to meet design loading criteria (High).

#### 13.8 Risk Assessment

 Should the CVRD wish to proceed with a NDMP funding application to remediate or replace Youbou Creek Dam they should undertake a more detailed cost estimate of infrastructure that would be impacted in the event of a dam breach (High).

# 14. Dam Safety Review Assurance Statement

In accordance The Association of Professional Engineers and Geoscientists of BC (APEGBC) Professional Practice Guidelines – Legislated Dam Safety Reviews in BC V3.0 (October 2016) we have completed a Dam Safety Review Assurance Statement, which is presented in Appendix H.



# References

ASCE/USCOLD, 1975. Lessons from Dam Incidents.

- Ardiaca, D.H., 2009. Mohr-Coulomb Parameters for Modelling of Concrete Structure. Plaxis Bulletin Spring Issue 2009.
- Association of Professional Engineers and Geoscientists of BC (APEGBC), 2016. Professional Practice Guidelines – Legislated Dam Safety Reviews in BC V3.0.
- British Columbia Ministry of Environment, 2012. Dam Safety Review Guidelines. Version 3.
- Canadian Dam Association (CDA), 1997. Dam Safety Guidelines.
- Canadian Dam Association (CDA), 2002. Dam Safety Review Workshop, 2002 CDA Conference, Victoria, British Columbia.
- Canadian Dam Association (CDA), 2007. Dam Safety Guidelines 2013 Edition.
- Canadian Dam Association (CDA), 2007. Technical Bulletin Dam Safety Analysis and Assessment.
- Canadian Dam Association (CDA), 2007. Technical Bulletin Geotechnical Considerations for Dam Safety.
- Canadian Dam Association (CDA), 2007. Technical Bulletin Hydrotechnical Considerations for Dam Safety.
- Canadian Dam Association (CDA), 2007. Technical Bulletin Inundation, Consequences and Classification for Dam Safety.
- Canadian Dam Association (CDA), 2007. Technical Bulletin Seismic Hazard Considerations for Dam Safety

Canadian Dam Association (CDA), 2011. Guidelines for Public Safety around Dams.

Environment Canada, 2014. Historical Climate Data. http://climate.weather.gc.ca/

- Fell, R., MacGregor, P., Stapledon, D., and Bell, G., 2005. Geotechnical Engineering of Dams. CRC Press.
- FLO-2D, 2011. FLO-2D Grid Developer System (GDS) Pro Manual.
- Garcia, R., López, J.L, Noya, M.E., Bello, M.T., González, N. Paredes, Vivas, M.I. & O'Brien, J.S., 2003. "Hazard mapping for debris flow events in the alluvial fans of northern Venezuela." Third International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. Davos, Switzerland. September 10 12.
- Garcia, R. & López, J.L, 2005. "Debris Flows of December 1999 in Venezuela." Chapter 20th of Debris-flow Hazards and Related Phenomena. Jakob, Matthias, Hungr, Oldrich Eds. Springer Verlag Praxis, Berlin.
- Goda Y., 1988. On the Methodology of Selecting Design Wave Height. Proceedings of the Coastal Engineering Conference, Malaga, Spain, ASCE, 899-913.
- Halchuk, S.C., Adams, J.E., and Allen, T.I. 2015. "Fifth generation seismic hazard model for Canada: Grid values of mean hazard to be used with the 2015 National Building Code of Canada". Geological Survey of Canada Open File 7893.
- Hogg, W. D. and D.A. Carr, 1985. Rainfall Frequency Atla.s for Canada.
- Ministry of Forest, Land and Natural Resource Operation, 2014. River Forecast Centre, Automated Snow Pillow Data. http://bcrfc.env.gov.bc.ca/data/asp/



Singhal B.B.S, and Gupta, R.P., 2010. Applied Hydrogeology of Fractured Rocks, Second Edition.

Smith C.D., 1995. Hydraulic Structures.

USBR, 1999. A Procedure for Estimating Loss of Life Caused by Dam Failure. DSO-99-06

Water Survey of Canada, 2012. Archived hydrometric data: http://www.wsc.ec.gc.ca/applications/H2O/ indexeng.cfm.

# Figures

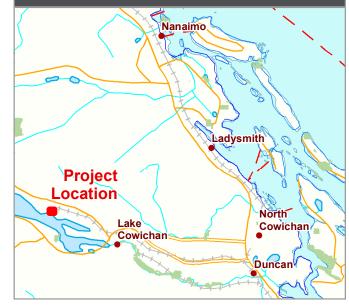
| Figure 1.2a | Site Plan                                                            |
|-------------|----------------------------------------------------------------------|
| Figure 1.2b | General Site Location & Access Routes                                |
| Figure 3.4  | Bedrock Geology                                                      |
| Figure 4.1  | Estimated Dimensions of Youbou Creek Dam                             |
| Figure 5.0a | Extent of Inundation & Maximum Flow Depth                            |
| Figure 5.0b | Time (Hrs) for 0.6 m Flow Depth                                      |
| Figure 5.0c | Flood Hazard Rating                                                  |
| Figure 8.3  | Steady State Seepage Analysis: Reservoir Level at Spillway Elevation |
| Figure 8.8  | Melton Ratio of Youbou Creek                                         |
| Figure 9.1  | Youbou Creek Watershed                                               |
| Figure 9.2  | Climate and Automated Snow Pillow Stations                           |
| Figure 9.3  | Hydrometric Stations                                                 |
| Figure 9.4  | Inflow Design Flood Hydrographs                                      |
| Figure 9.5a | Youbou Creek Dam Area Elevation Storage Curves                       |
| Figure 9.5b | Youbou Creek Dam Spillway Rating Curve                               |
| Figure 9.5c | Youbou Creek Dam Flood Routing Hydrographs                           |
| Figure 9.5d | Youbou Creek Dam Reservoir Flood Levels                              |
| Figure 10.1 | Dam Safety Management System                                         |



# SITE PLAN





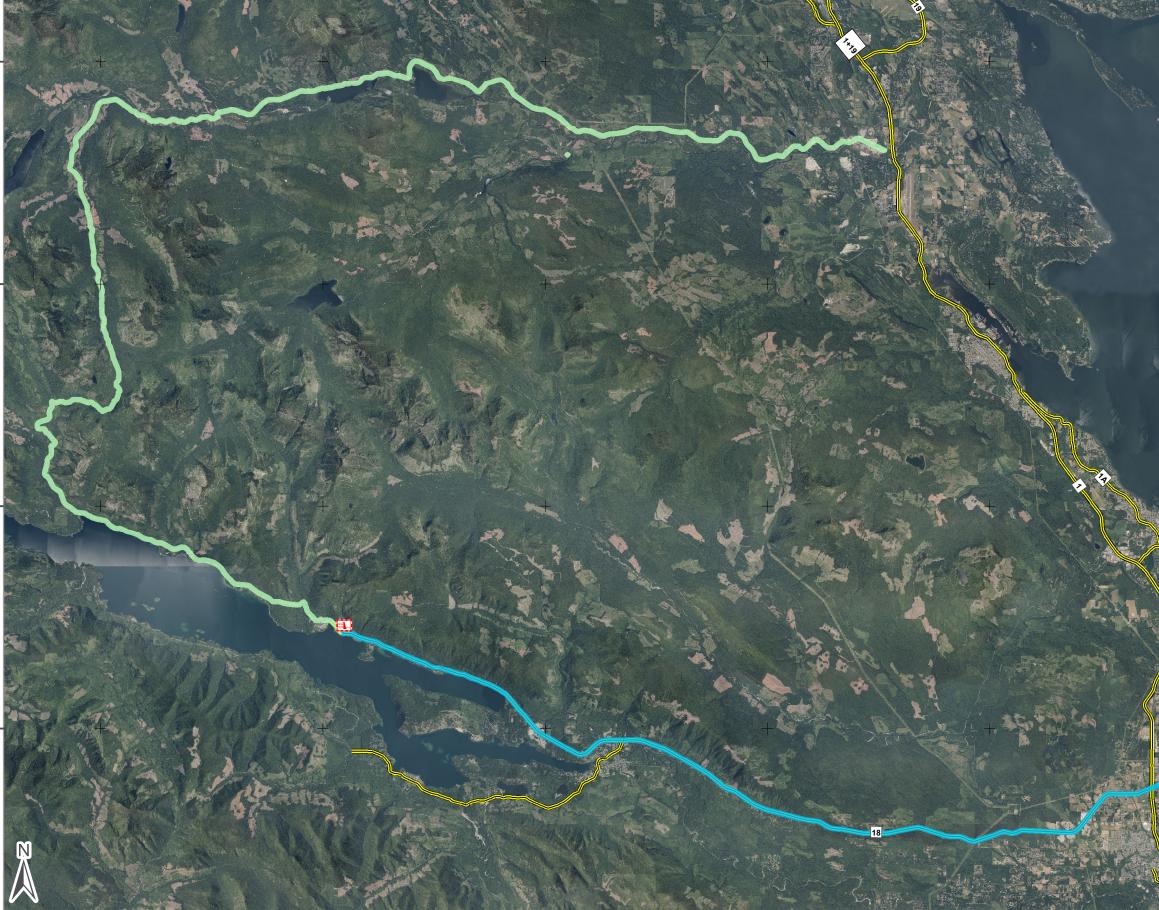

#### DAM SAFETY REVIEW AND RISK ASSESSMENT OF YOUBOU CREEK DAM YOUBOU, BC

## Legend

- Youbou Creek Dam
  - 100m TRIM Contours
  - Fresh Water Atlas Streams
  - Digital Atlas Roads
- Highways
  - Dam Access Road

# LOCATION MAP








5414800

# **GENERAL SITE LOCATION & ACCESS ROUTES**





400000

410000

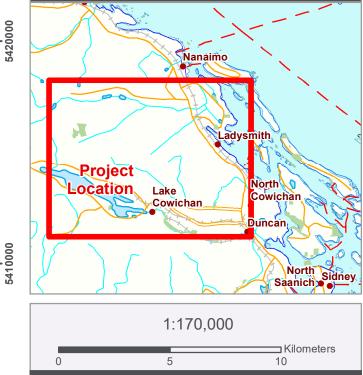
420000

430000

440000





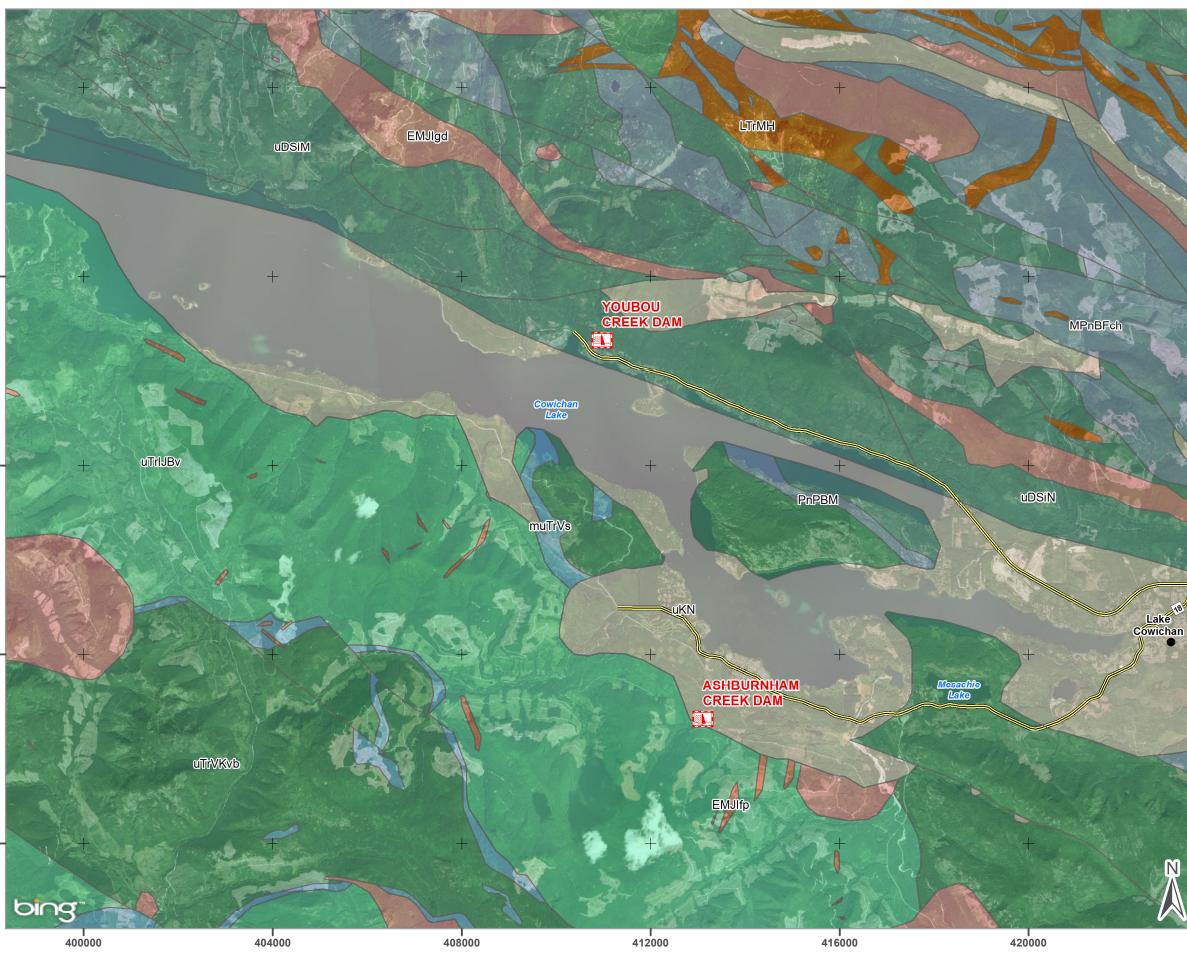

## Legend

5440000

1 5430000

- Youbou Creek Dam
  - Highways
  - Route 1 30 min (40.9km)
  - Route 2 1 h 44 min (79.7km)

### LOCATION MAP

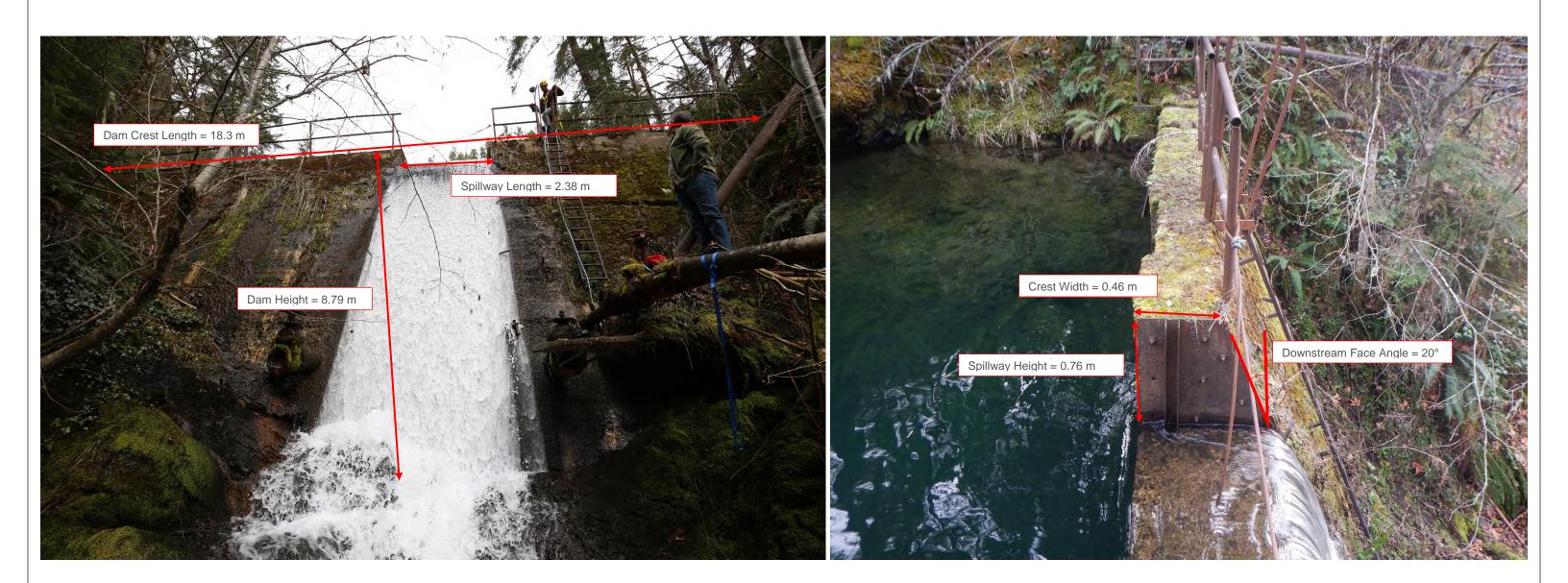



Project No.: GK-18-020-CVD Client: Cowichan Valley Regional District NAD 1983 UTM Zone 10N Date: 2018/11/16 Drawn: MT Check: AG

Figure 1.2b

# **BEDROCK GEOLOGY**






# ecora

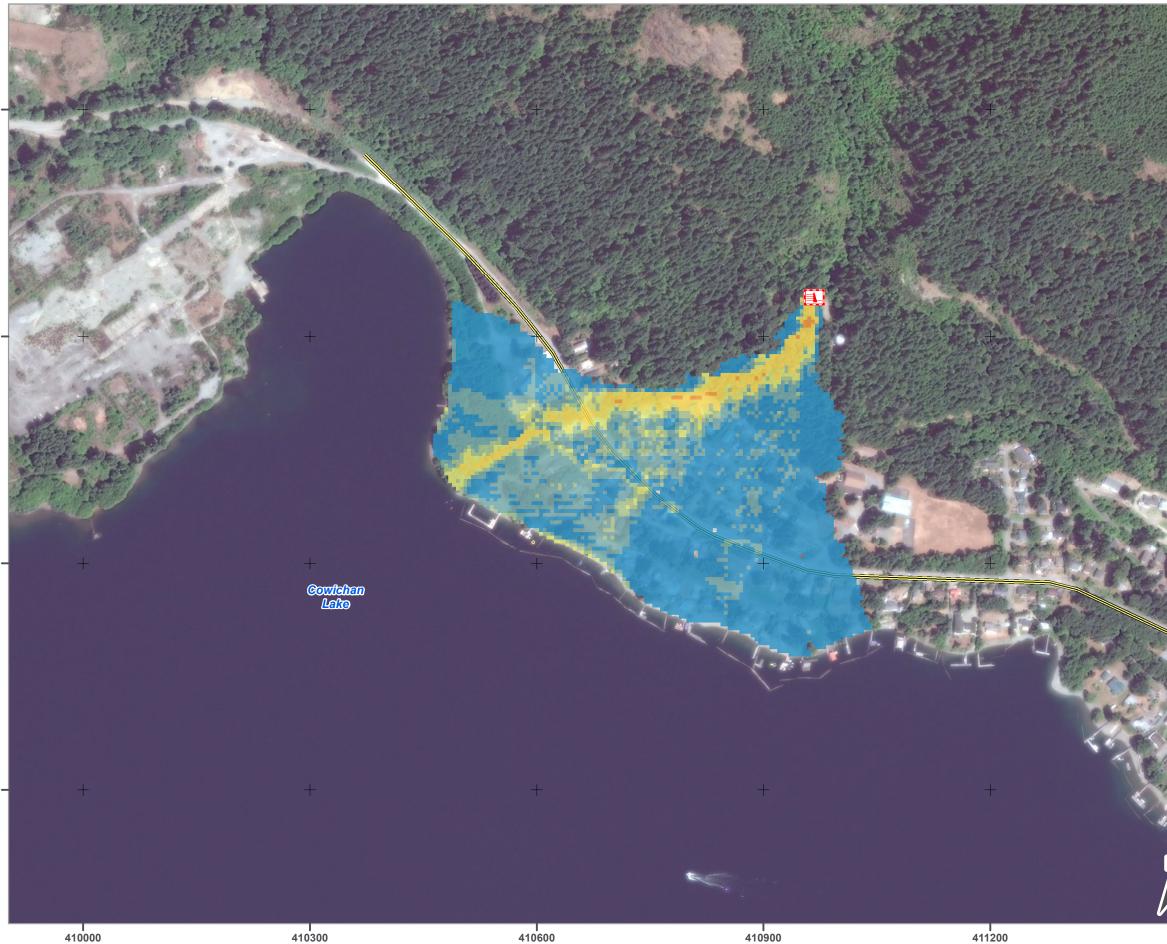
# DAM SAFETY REVIEW AND **RISK ASSESSMENT OF** YOUBOU CREEK DAM YOUBOU, BC

.

|         | Legend                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|         | Cities                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|         | Dam Locations                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|         | Highways                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|         | Streams                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|         | Bedrock Geology                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 00      | EMJIfp - Feldspar porphyry, hornblende porphyry, augite porphyry, dacite, basalt (92B, C, F).                                                                                                                                                                             |  |  |  |  |  |  |
| 4160    | EMJIgd - Granodiorite, quartz diorite, quartz monzonite, diorite, agmatite, feldspar porphyry, minor gabbro and aplite (170 - 185 Ma).                                                                                                                                    |  |  |  |  |  |  |
| ũ       | LTrMH - Gabbro, diabase, feldspar diabase, glomeroporphyritic diabase and gabbro, minor diorite (215 - 230 Ma). Coeval with Karmutsen Formation.                                                                                                                          |  |  |  |  |  |  |
|         | MPnBFch - Ribbon chert, cherty tuff, graphitic argillite, thinly bedded<br>intercalated sandstone-sittstone-argillite, volcanic sandstone and<br>conglomerate, interbedded argillite and crinoidal limestone, massive and<br>pillowed basalt with intercalated cherty sed |  |  |  |  |  |  |
|         | PnPBM - Massive crinoidal limestone, bedded calcirudite and calcarenite,<br>chert, cherty argillite and siltstone, marble (Upper Pennsylvanian to Lower<br>Permian) (92B, C, F)                                                                                           |  |  |  |  |  |  |
|         | muTrVs - Undifferentiated Parson Bay and Quatsino formations (92B, C, F).                                                                                                                                                                                                 |  |  |  |  |  |  |
|         | uDSiM - Thickly bedded tuffite and lithic tuffite, breccia, tuff, feldspar and quartz-feldspar crystal tuff, lapilli tuff, rhyolite, dacite, laminated tuff, jasper, chert, hematite-chert iron formation (92B, C, F).                                                    |  |  |  |  |  |  |
| 000     | uDSiN - Pyroxene-feldspar phyric agglomerate, breccia, lapilli tuff, massive<br>and pillowed flows, massive tuffite, laminated tuff, jasper and chert (92B, C, F)                                                                                                         |  |  |  |  |  |  |
| 5412(   | uKN - Boulder, cobble and pebble conglomerate, coarse to fine sandstone,<br>siltstone, shale, coal (Santonian to Maastrichtian). ). Includes BENSON,<br>COMOX, HASLAM, EXTENSION, PENDER, PROTECTION, EAST                                                                |  |  |  |  |  |  |
|         | WELLINGTON, TRENT RIVER, CEDAR DISTRICT, DE COURCY, DE                                                                                                                                                                                                                    |  |  |  |  |  |  |
|         | uTrVKvb - Basalt pillowed flows, pillow breccia, hyaloclastite tuff and breccia,<br>massive amygdaloidal flows, minor tuffs, interflow sediment and limestone                                                                                                             |  |  |  |  |  |  |
|         | lenses (Carnian).<br>uTrIJBv - Massive amygdaloidal and pillowed basalt to andesite flows, dacite                                                                                                                                                                         |  |  |  |  |  |  |
|         | to rhyolite massive or laminated lava, green and maroon tuff, feldspar crystal tuff, breccia, tuffaceous sandstone, argillite, pebble conglomerate and minor                                                                                                              |  |  |  |  |  |  |
|         | limestone (Sinemurian t                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 000     |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 408     |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| ŋ       |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         | 1:80,000                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| 1000    | 0 1 2 3 4                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 5404000 |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|         | Project No.: GK-18-020-CVD Date: 2018/11/02<br>Client: Cowichan Vallev Drawn: MT Check: AG                                                                                                                                                                                |  |  |  |  |  |  |
|         | Client: Cowichan Valley Drawn: MT Check: AG<br>Regional District                                                                                                                                                                                                          |  |  |  |  |  |  |
|         | NAD 1983 UTM Zone 10N Figure 3.4                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |



| Notes:<br>Photos taken on March 3, 2018. | DAM                                                          | SAFETY REVIEW AND RISK                                                                              |
|------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                          |                                                              | Estimated Dimens                                                                                    |
|                                          | Project No.<br>Client:<br>Office:<br>Scale:<br>Date:<br>DWN: | GK-18-020-CVD<br>Cowichan Valley Regional District<br>Kelowna<br>NTS<br>JAN 10, 2019<br>AG CHK: MJL |


# ASSESSMENT OF YOUBOU CREEK DAM

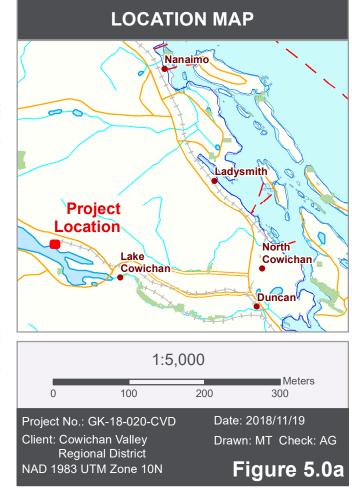
sions of Youbou Creek Dam



Figure 4.1

# **EXTENT OF INUNDATION & MAXIMUM FLOW DEPTH**






#### DAM SAFETY REVIEW AND RISK ASSESSMENT OF YOUBOU CREEK DAM YOUBOU, BC

#### Legend

|                        | Youbou Lake Dam Locat |  |
|------------------------|-----------------------|--|
|                        | Assumed Residence     |  |
|                        | Other Building        |  |
| Maximum Flow Depth (m) |                       |  |
|                        | 0.000 - 0.250         |  |
|                        | 0.251 - 0.500         |  |
|                        | 0.501 - 0.750         |  |
|                        | 0.751 - 1.000         |  |
|                        | 1.001 - 2.000         |  |
|                        | 2.001 - 4.000         |  |
|                        | 4.001 - 6.000         |  |
|                        | 6.001 - 8.000         |  |
|                        |                       |  |

Total Area of Inundation = 0.16 km<sup>2</sup>



5414900

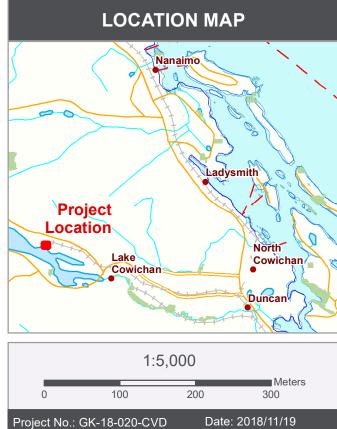
5414600

# TIME (HRS) FOR 0.6m FLOW DEPTH





#### DAM SAFETY REVIEW AND RISK ASSESSMENT OF YOUBOU CREEK DAM YOUBOU, BC


5414900

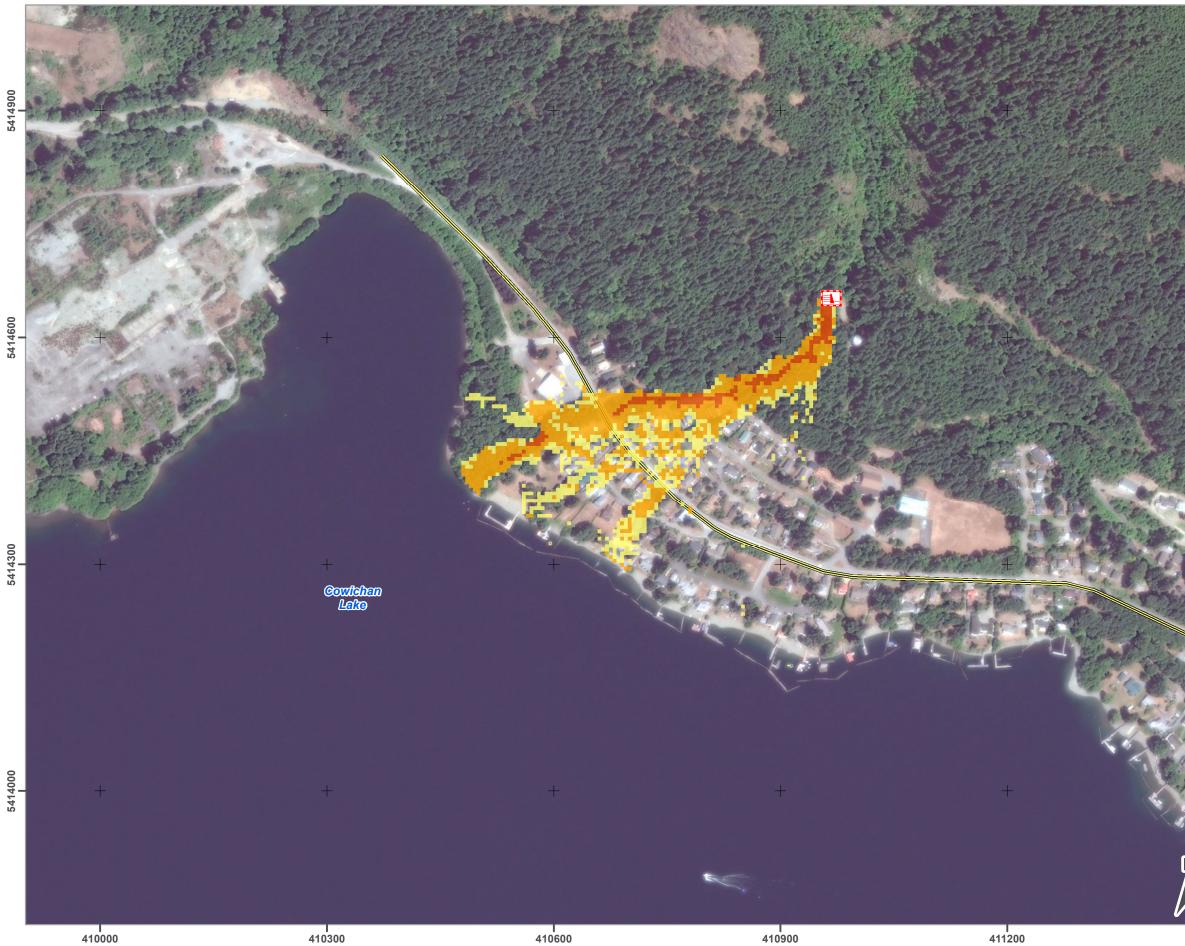
#### Legend

- Youbou Lake Dam Location
- Assumed Residence
- Other Building

#### Time (hrs) for 0.6m Flow Depth

- 0.100 1.000
- 1.001 3.000
- 3.001 5.000
- 5.001 7.000
- 7.001 9.000
- 9.001 10.000
- 10.001 15.000




Client: Cowichan Valley Regional District NAD 1983 UTM Zone 10N

Drawn: MT Check: AG

Figure 5.0b

14300

# **FLOOD HAZARD RATING**

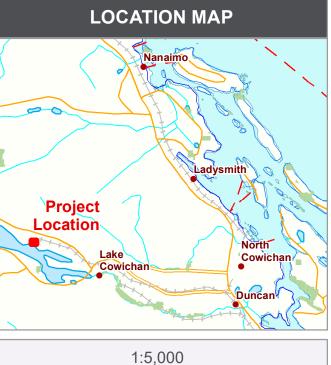


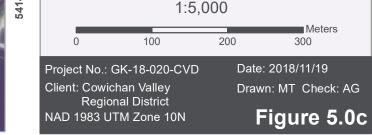
# **ecora**°

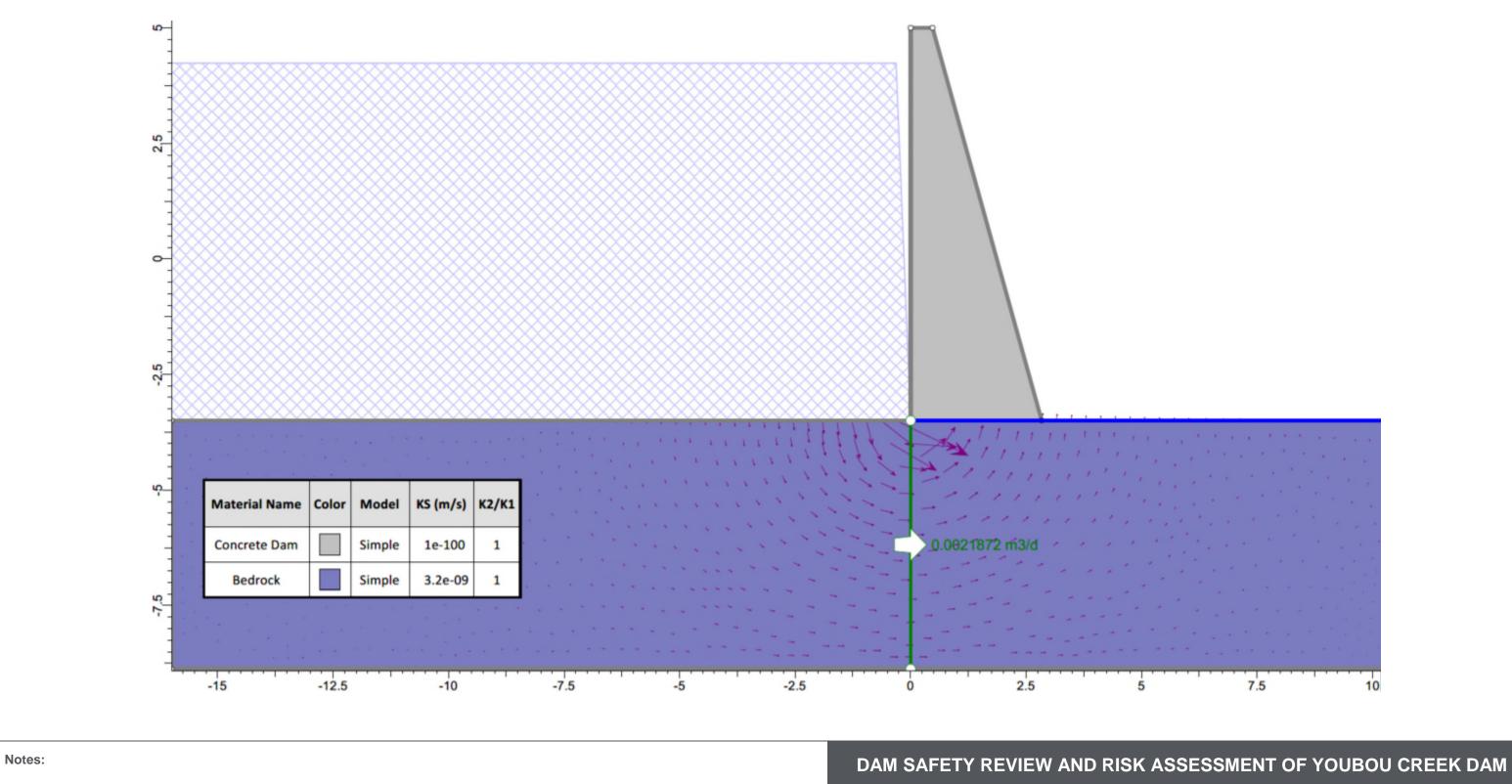
#### DAM SAFETY REVIEW AND **RISK ASSESSMENT OF** YOUBOU CREEK DAM YOUBOU, BC

#### Legend

Youbou Lake Dam Location


Assumed Residence


Other Building

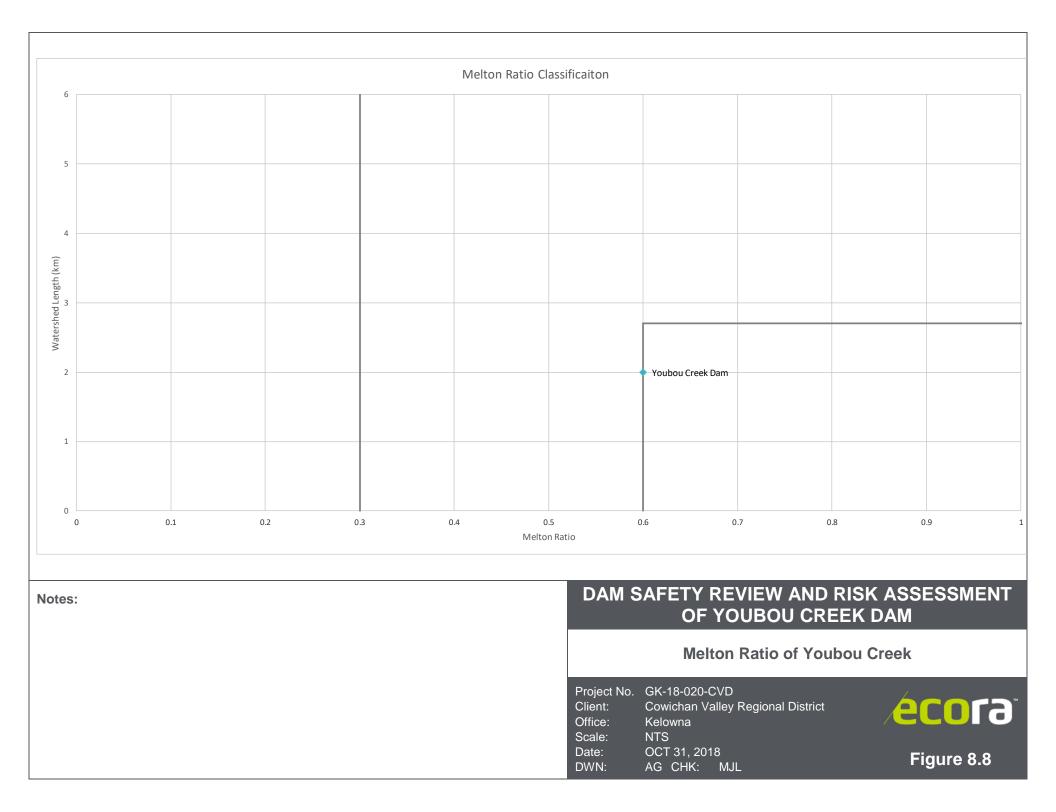

Flood Hazard Rating and Total Area of Flooding Downstream of Dam Spillway Low (0.016km<sup>2</sup>)

- Medium (0.022 km <sup>2</sup>) High (0.0042 km <sup>2</sup>)
- 5414600

| Hazard Level                          | Description                                                 |  |
|---------------------------------------|-------------------------------------------------------------|--|
| High                                  | Persons are in danger both inside and outside of buildings. |  |
| High                                  | Structures are at risk of being destroyed.                  |  |
|                                       | Persons are in danger outside of buildings. Structures may  |  |
| Medium                                | suffer damage and possible destruction depending on         |  |
|                                       | construction characteristics.                               |  |
|                                       | Danger to persons is low or non-existent. Buildings may     |  |
| Low                                   | suffer little structural damage, however may undergo        |  |
|                                       | significant non-structural damage to interiors.             |  |
| Reference: Garcia, et al., 2003, 2005 |                                                             |  |
|                                       |                                                             |  |








| Project No. | GK-18-020-CVD                     |
|-------------|-----------------------------------|
| Client:     | Cowichan Valley Regional District |
| Office:     | Kelowna                           |
| Scale:      | NTS                               |
| Date:       | November 5, 2018                  |
| DWN:        | CE CHK: MJL                       |

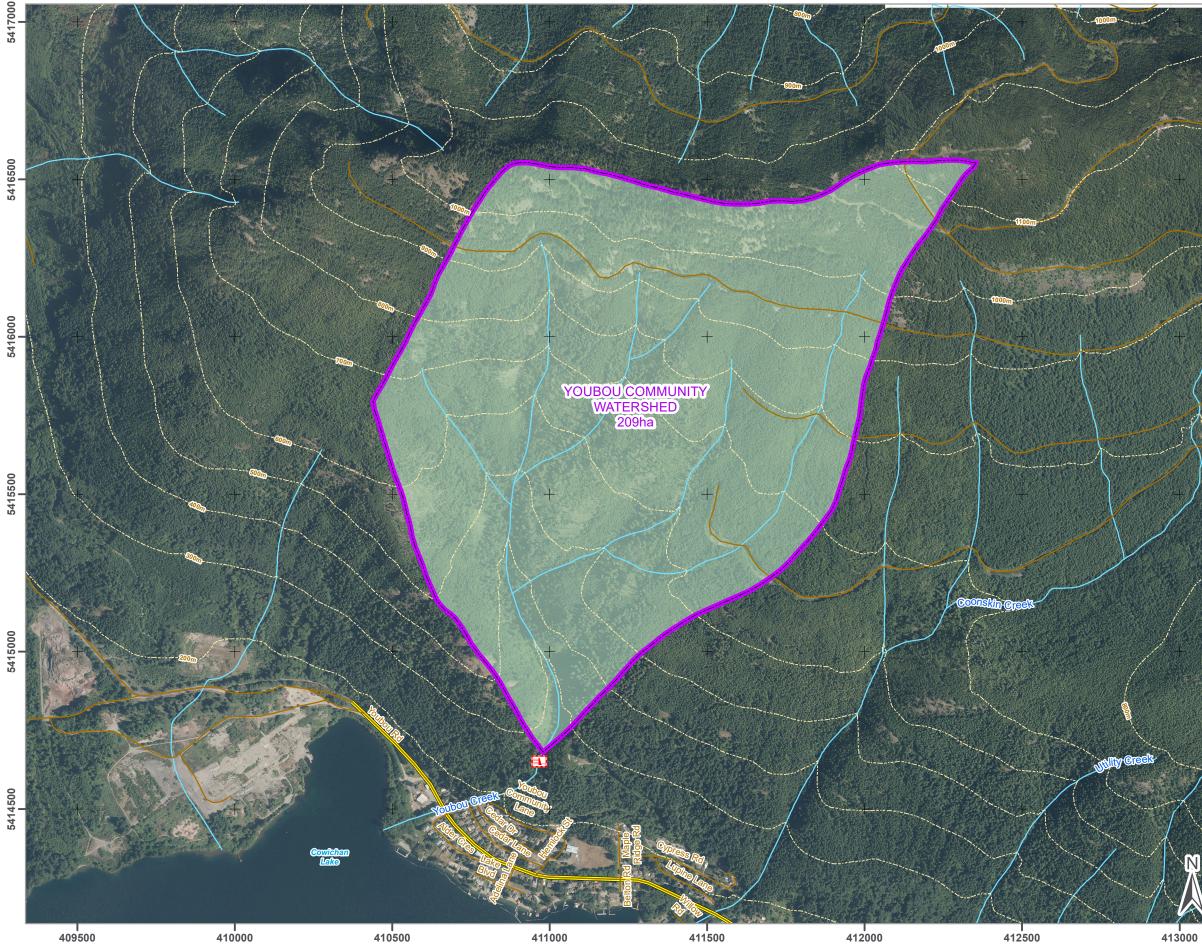

## Steady State Seepage Analysis: Reservoir Level at Spillway Elevation



Figure 8.3



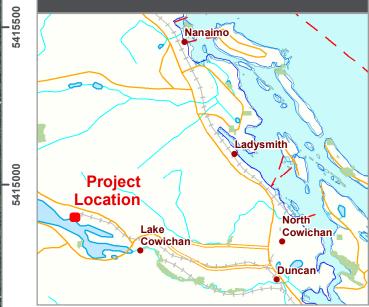
# YOUBOU CREEK WATERSHED





#### DAM SAFETY REVIEW AND **RISK ASSESSMENT OF** YOUBOU CREEK DAM YOUBOU, BC

# Legend


5417000

5416500

5416000


- Youbou Creek Dam
  - 100m TRIM Contours
  - Fresh Water Atlas Streams
  - **Digital Atlas Roads**
  - Highways
  - Youbou Community Watershed

# LOCATION MAP

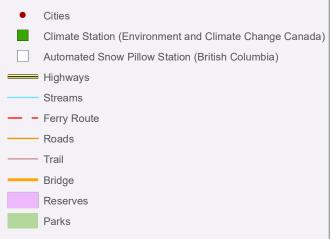


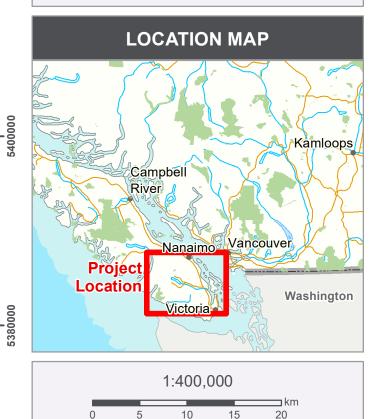
#### 5414500 1:12,000 ☐ Meters 250 500 Ω Project No.: GK-18-020-CVD Date: 2018/11/02 Client: Cowichan Valley Regional District NAD 1983 UTM Zone 10N Drawn: MT Check: AG Figure 9.1

# **CLIMATE AND AUTOMATED SNOW PILLOW STATIONS**






#### DAM SAFETY REVIEW AND **RISK ASSESSMENT OF** YOUBOU CREEK DAM YOUBOU, BC


#### Legend

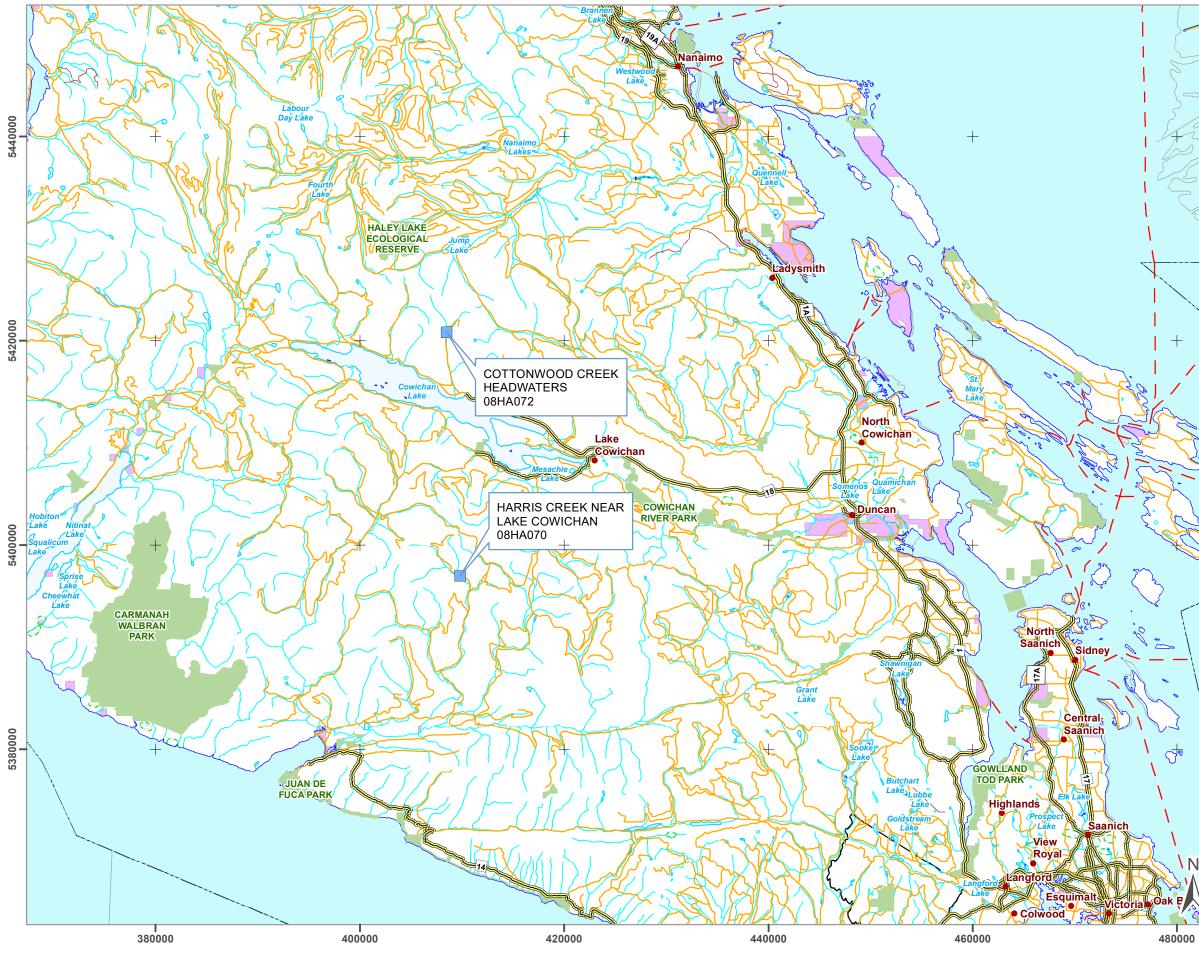
00

54400

5420000








5

Date: 2018/11/19 Drawn: MT Check: AG

Figure 9.2

# **HYDROMETRIC STATIONS**

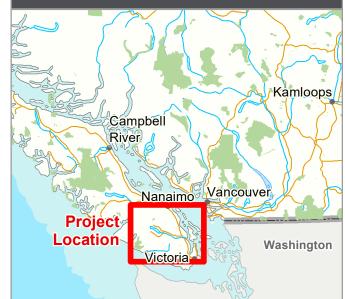


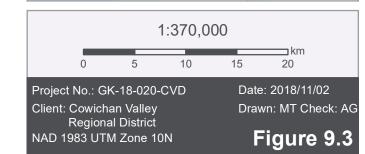


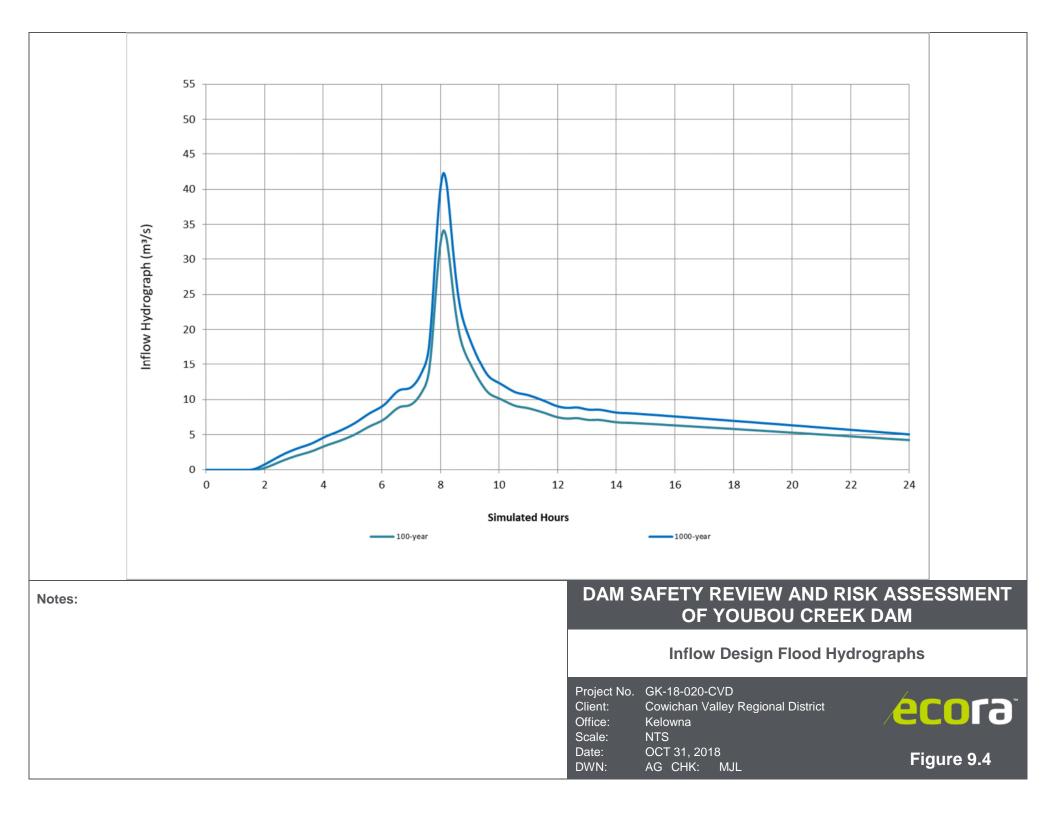
#### DAM SAFETY REVIEW AND **RISK ASSESSMENT OF** YOUBOU CREEK DAM YOUBOU, BC

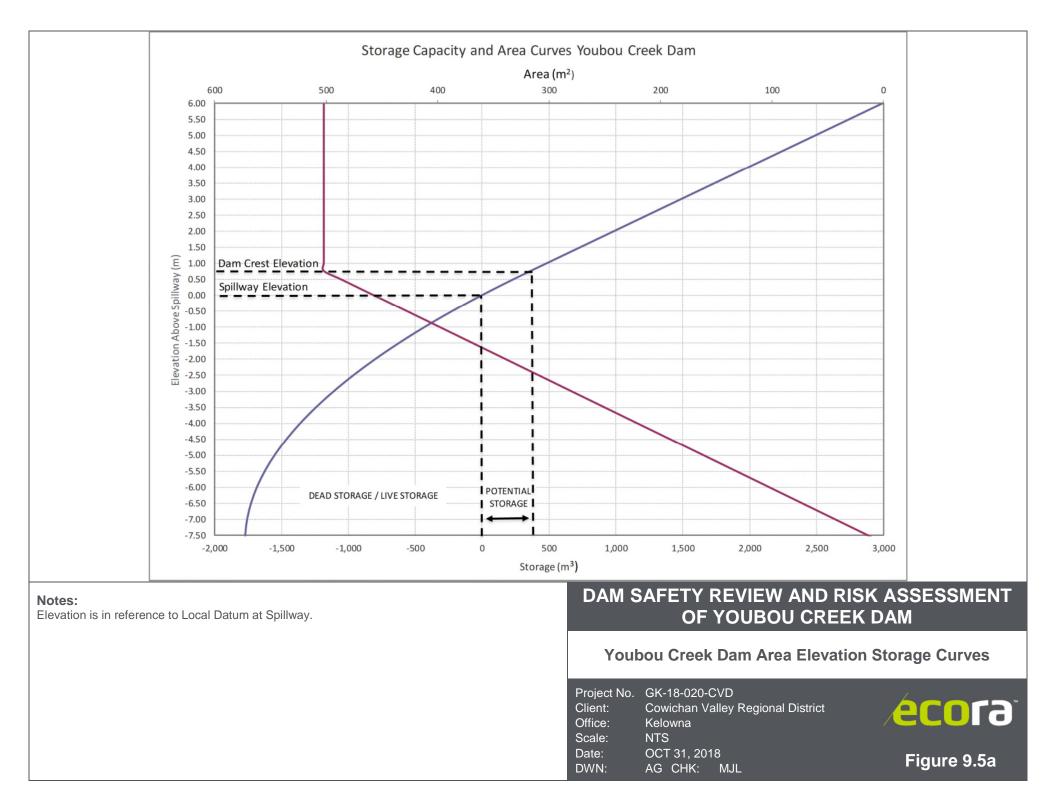
#### Legend

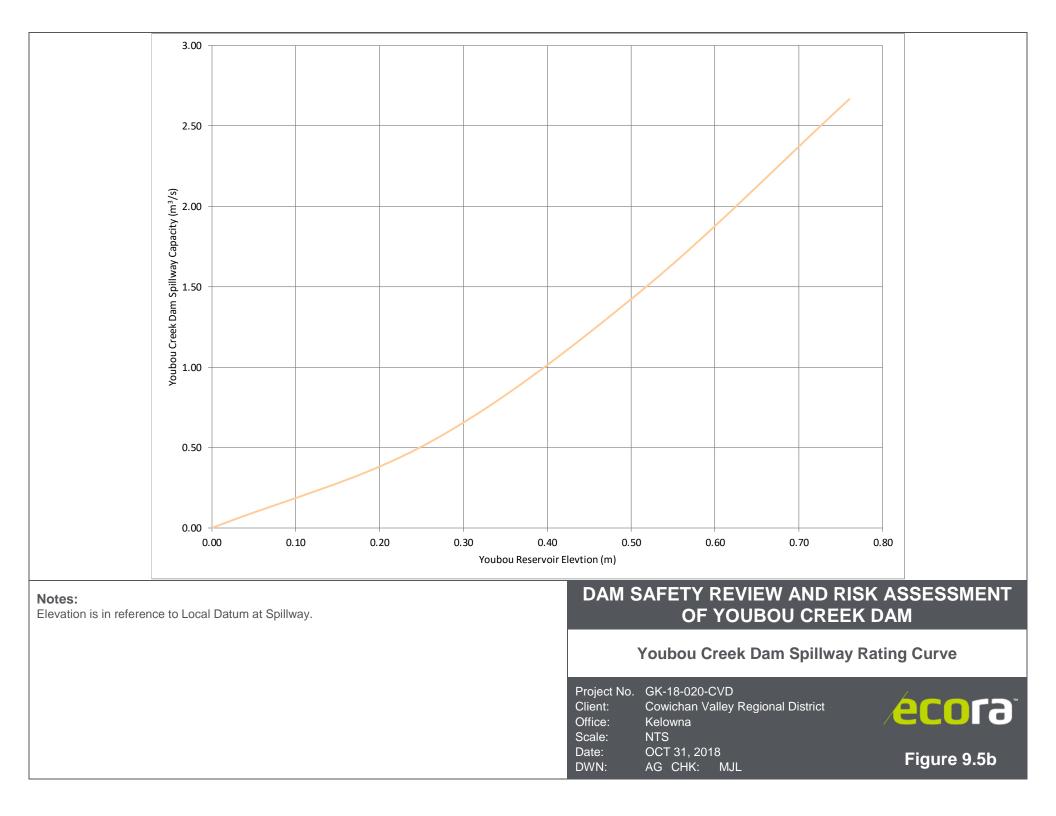
5440000

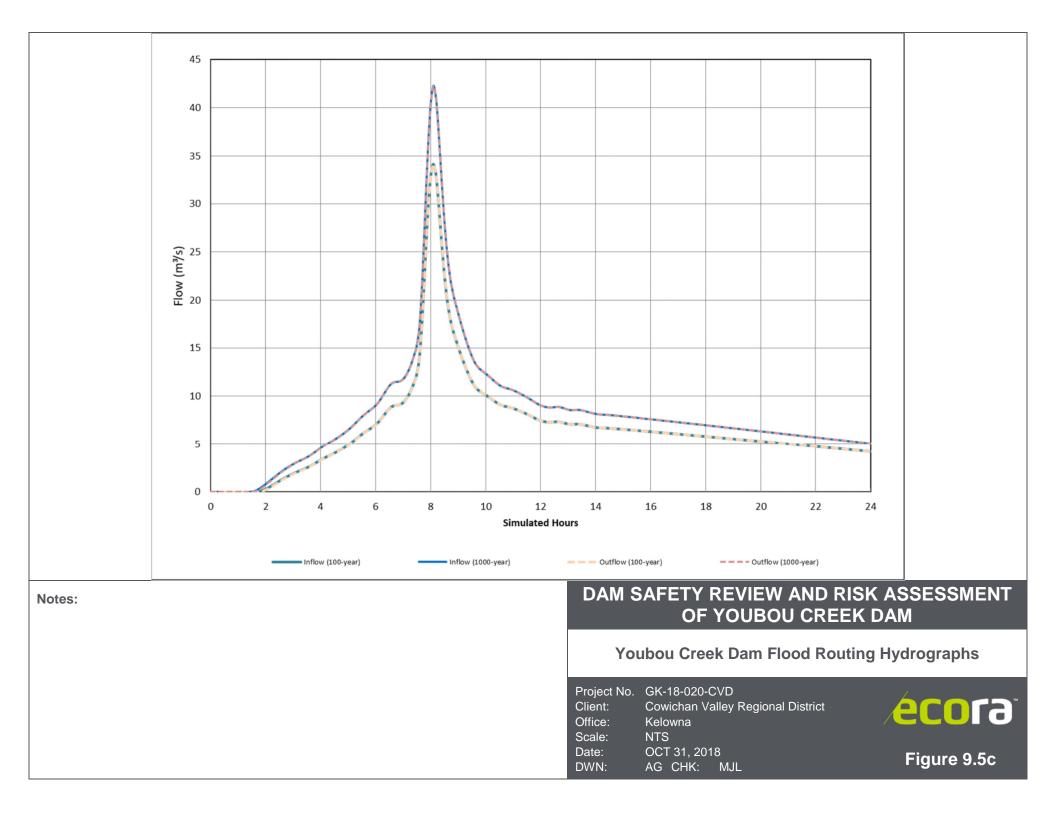

5420000

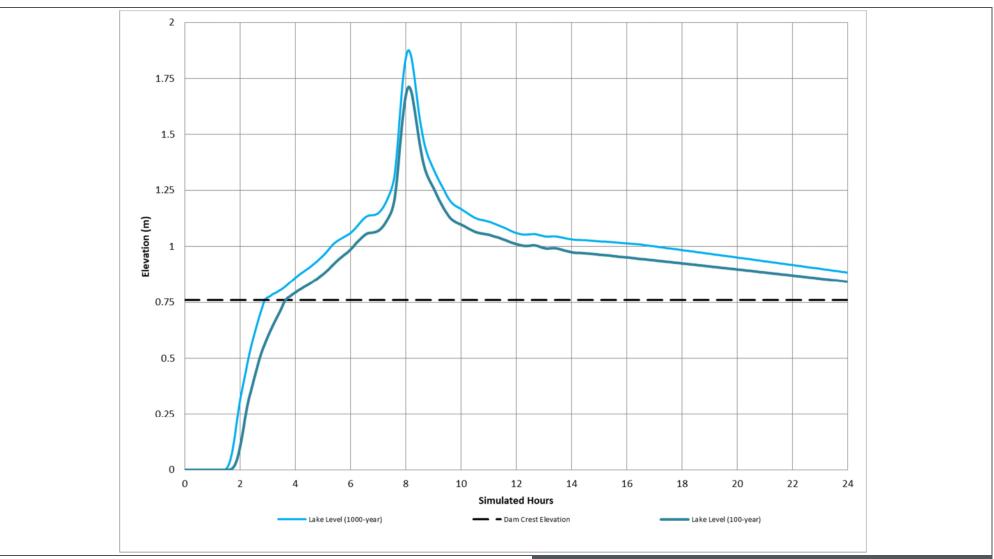

5400





- Hydrometric Station (Water Survey of Canada)
- Highways
  - Streams
- — Ferry Route
- Roads
- Trail
- Bridge
- Reserves
- Parks







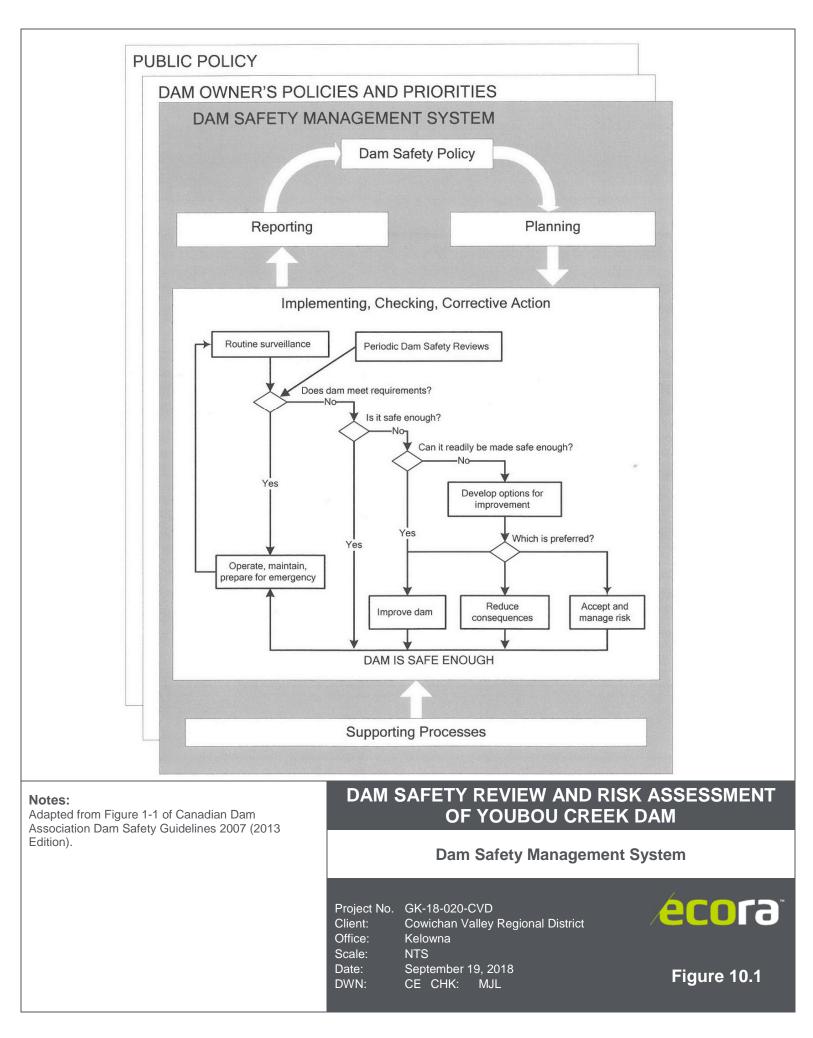







#### Notes:

Elevation is in reference to Local Datum at Spillway.


### DAM SAFETY REVIEW AND RISK ASSESSMENT OF YOUBOU CREEK DAM

#### Youbou Creek Dam Reservoir Flood Levels

| Project No. | GK-18-020-CVD                     |
|-------------|-----------------------------------|
| Client:     | Cowichan Valley Regional District |
| Office:     | Kelowna                           |
| Scale:      | NTS                               |
| Date:       | OCT 31, 2018                      |
| DWN:        | AG CHK: MJL                       |



Figure 9.5d



# Photographs

| Photo 1  | Upstream stilling basin and channel leading to culvert.                                   |
|----------|-------------------------------------------------------------------------------------------|
| Photo 2  | Reservoir as seen from the upstream side of the dam.                                      |
| Photo 3  | Culvert discharging into reservoir upstream of the dam.                                   |
| Photo 4  | Right upstream access to the dam crest.                                                   |
| Photo 5  | Dam crest as viewed from right side of the dam.                                           |
| Photo 6  | Upstream face of the dam above the waterline.                                             |
| Photo 7  | Corroded bent guardrail on the dam crest.                                                 |
| Photo 8  | Weathering of concrete on the left side of the spillway at the stoplog insert.            |
| Photo 9  | Concrete deterioration at edge of spillway.                                               |
| Photo 10 | Concrete deterioration above and below water line.                                        |
| Photo 11 | Backside of cold joint as viewed from within the reservoir.                               |
| Photo 12 | Downstream face of the dam as viewed from above at the right abutment.                    |
| Photo 13 | Downstream face of the dam as viewed from below looking towards right abutment.           |
| Photo 14 | Horizontal cracking and erosion on downstream dam face approximately 1 m below the crest. |
| Photo 15 | Vegetation growing on the dam face to the right of the spillway.                          |
| Photo 16 | Water flowing over spillway as viewed from below.                                         |
| Photo 17 | Downstream face of the dam as viewed from downstream.                                     |
| Photo 18 | Horizontal groove on the left downstream face approximately 1.7 m below the crest.        |
| Photo 19 | Weathering on the downstream face noted throughout the crest and front face.              |
| Photo 20 | Downstream face as viewed from the left of the spillway.                                  |
| Photo 21 | Low level outlet on the right side of the dam.                                            |
| Photo 22 | Low level outlet pipe and water intake line at left side of the dam.                      |
| Photo 23 | Low level outlet and water intake pipes viewed from dam crest.                            |
| Photo 24 | Outlet channel as viewed from the dam crest.                                              |



Photo 1 Upstream stilling basin and channel leading to culvert.



Photo 2 Reservoir as seen from the upstream side of the dam.





Photo 3 Culvert discharging into reservoir upstream of the dam.



Photo 4 Right upstream access to the dam crest.





Photo 5 Dam crest as viewed from right side of the dam.



Photo 6 Upstream face of the dam above waterline.





Photo 7 Corroded bent guardrail on the dam crest.



Photo 8 Weathering of concrete on the left side of the spillway at the stoplog insert.





Photo 9 Concrete deterioration at edge of spillway.



Photo 10 Concrete deterioration above and below water line.





Photo 11 Backside of cold joint as viewed from within the reservoir.



Photo 12 Downstream face of the dam as viewed from above at the right abutment.





Photo 13 Downstream face of the dam as viewed from below looking towards right abutment.



Photo 14 Horizontal cracking and erosion on downstream dam face approximately 1 m below the crest.



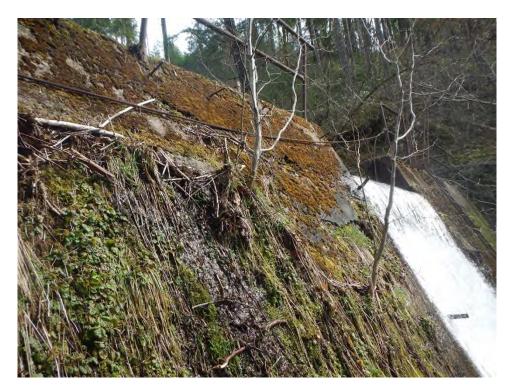



Photo 15 Vegetation growing on the dam face to the right of the spillway.



Photo 16 Water flowing over spillway as viewed from below.





Photo 17 Downstream face of the dam as viewed from downstream.



Photo 18 Horizontal groove on the left downstream face approximately 1.7 m below the crest.





Photo 19 Weathering on the downstream face noted throughout the crest and front face.



Photo 20 Downstream face as viewed from the left of the spillway.





Photo 21 Low level outlet on the right side of the dam.

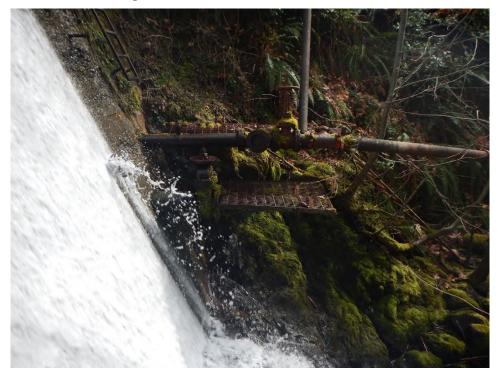



Photo 22 Low level outlet pipe and water intake line at left side of the dam.





Photo 23 Low level outlet and water intake pipes viewed from dam crest.



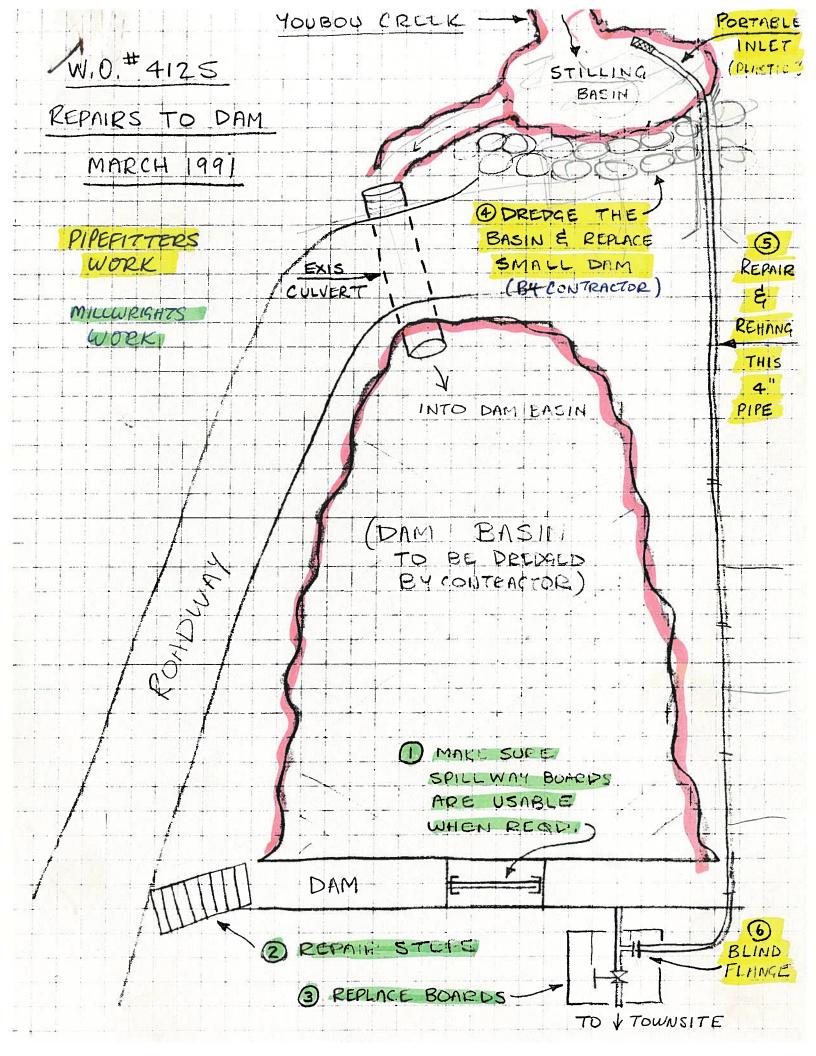
Photo 24 Outlet channel as viewed from the dam crest.

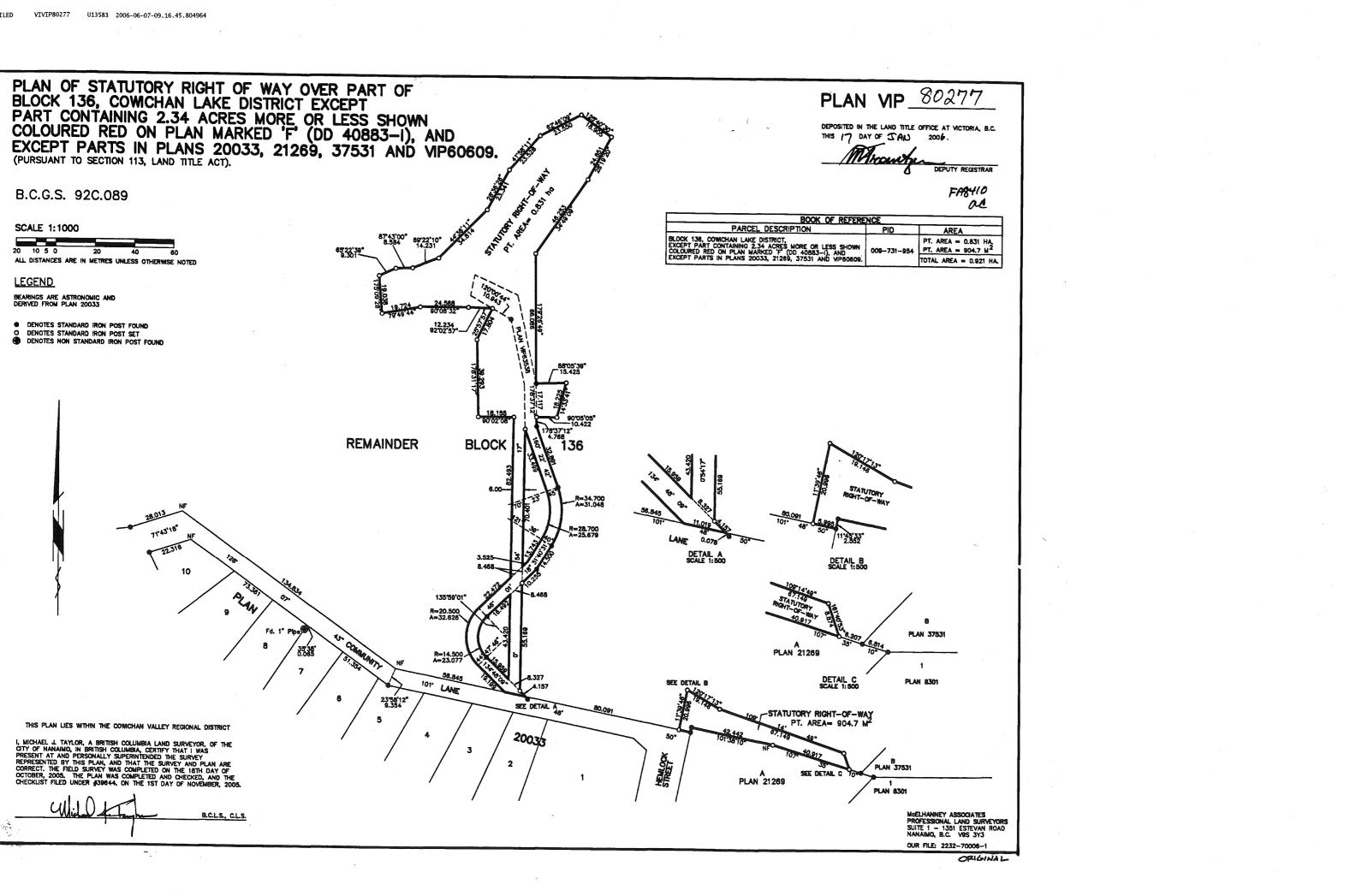


## Appendix A

### **Background Information Reviewed**




### **Background Review**


- March 1991 Sketch for Repairs to Dam, WO#4125 Unknown
- January 2006 Plan of Statutory Right of Way McElhanney Associates
- January 2006 Youbou Water Project Dam Site Richard Mortimer
- September 2007 Integration of Youbou Water Systems Reservoir Details John Braybrooks Engineering

# Appendix B

### Existing Dam Drawings







## Appendix C

**Dam Inspection Notes** 



|                  |                                                                     | General Description of Dam                     |                                                                                                                                                             |
|------------------|---------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:            | March 28, 2018                                                      | Attendees:                                     | Michael J. Laws, P.Eng. (Ecora), Caleb Pomeroy, P.Eng.<br>(Ecora), Dr. Adrian Chantler, P.Eng. (Ecora), Bram Hobuti,<br>P.Eng. (Ecora), David Parker (CVRD) |
| Weather:         | Cloudy                                                              | Location:                                      | Cowichan Valley Regional District                                                                                                                           |
| Length:          | 18.3 m                                                              | Outlet type:                                   | 400 mm Steel Pipe                                                                                                                                           |
| Max. Height:     | 8.79 m                                                              | Sluice gate:                                   | Gate Valve                                                                                                                                                  |
| Crest Elevation: | N/A                                                                 | Spillway:                                      | 2.38 m long, 0.76 m deep, located at centre                                                                                                                 |
| Crest Width:     | 0.46 m                                                              | Spillway Crest Elevation:                      | N/A                                                                                                                                                         |
| Water Level:     | Just above spillway                                                 | Downstream Slope Angle:                        | 15°                                                                                                                                                         |
| Appurtenances:   | Spillway                                                            | Upstream Slope Angle:                          | Vertical                                                                                                                                                    |
|                  |                                                                     | Observations                                   |                                                                                                                                                             |
| Location         |                                                                     |                                                |                                                                                                                                                             |
| Foundation       | Dam formed on bedrock                                               |                                                |                                                                                                                                                             |
| Spillway         | Concrete weathering observed around                                 | spillway behind steel stoplog insert side pla  | ate                                                                                                                                                         |
| Outlet           | 300 mm diameter steel low level outlet                              | to the right of spillway, second outlet to the | e left of the spillway                                                                                                                                      |
| Outlet           | 150 mm diameter steel water supply lir                              | e to the left of the spillway                  |                                                                                                                                                             |
| Crest            | Wall width measured to be 0.46 m wide                               | 9                                              |                                                                                                                                                             |
| Crest            | Guard railing on dam crest is bent and                              | rusted                                         |                                                                                                                                                             |
| Reservoir        | Sediment in reservoir measured to be abutment and 4.7 m at spillway | 1.27 m below crest at right abutment, 3.80     | m 2.3 m away from left abutment, 4.35 m 4.9 m away from                                                                                                     |
| Dam Face         | Face is angled 15° from vertical with a                             | length measured to be 8.79 m                   |                                                                                                                                                             |
| Dam Face         | Control joints located 1.00 m and 2.84                              | m down from dam crest                          |                                                                                                                                                             |
| Dam Face         | Seepage was observed to the left of th                              | e spillway, vegetation observed growing ne     | ear seepage area. Dam covered in moss. Face is weathered                                                                                                    |
| Inlet Channel    | Two CSP culverts located above reser                                | voir, measured at 1.2 m and 1.1 m in diame     | eter                                                                                                                                                        |
| Outlet Channel   | Three 1.1 m diameter CSP culverts ap                                | proximately 6 m long under access road to      | the dam                                                                                                                                                     |
|                  |                                                                     |                                                |                                                                                                                                                             |
|                  |                                                                     |                                                |                                                                                                                                                             |
|                  |                                                                     |                                                |                                                                                                                                                             |
|                  |                                                                     |                                                |                                                                                                                                                             |
|                  |                                                                     |                                                |                                                                                                                                                             |

#### Table C Site Inspection Observations of the Youbou Creek Dam

## Appendix D

### Hazard and Failure Modes Analysis



| Table F: | Hazards and | Failure Modes | Analysis | (HFMM) |
|----------|-------------|---------------|----------|--------|
|----------|-------------|---------------|----------|--------|

| Global<br>Failure            | Element And/Or                              | Most Basic Functional                                                                              | External Hazards                                                                                                                                                                                            |                                                                                                                                                                                                                   |                                                                                                                                                                                                           |                                                                                                                                                                            | Internal Hazards (Design, Construction, Ma                                                                                                                                         | intenance, Operation)                                                                                                                                                                                                       |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |
|------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lodes                        | Element Function                            | Failure Characteristics                                                                            | Meteorological                                                                                                                                                                                              | Seismic                                                                                                                                                                                                           | Reservoir Environment                                                                                                                                                                                     | Human and/or Animal Activities                                                                                                                                             | Water barrier                                                                                                                                                                      | Hydraulic Structure.                                                                                                                                                                                                        | Mechanical/Electrical                                                                                                                                                                                                                                  | Infrastructure & Plans                                                                                                                                                                                                     |
|                              | Inadequate installed<br>discharge capacity  | Meteorological inflow > buffer + outflow capacity                                                  | Could a meteorological event cause the inflow to be<br>greater than the outflow capacity and lead to dam<br>overtopping / failure due to insufficient installed<br>discharge capacity?                      | Could a seismic event cause a<br>meteorological event and cause the dam to<br>be overtopped/fail from a reduced<br>discharge capacity (channels, chutes)?                                                         | Could the reservoir environment<br>(landslide? debris?) cause a<br>meteorological event leading to the dam<br>to be overtopped/fail because of<br>insufficient installed discharge capacity?              | overtopped/fail due to insufficient                                                                                                                                        | Could design or construction of the water<br>barrier cause a meteorological event leading<br>to dam overtopping / failure due to insufficient<br>installed discharge capacity?     | Could design or construction of the<br>hydraulic structure cause a meteorological<br>inflow greater than the buffer + outflow<br>capacity and cause the dam to be<br>overtopped/fail?                                       | Could the design or construction of the<br>mechanical/electrical systems cause a meteorological<br>inflow greater than the buffer + outflow capacity and lead to<br>the dam being overtopped/fail due to insufficient installed<br>discharge capacity? | Could inadequate infrastructure and plans cause a<br>meteorological inflow greater than the buffer +<br>outflow capacity and lead to the dam being<br>overtopped/fail due to insufficient installed<br>discharge capacity? |
|                              |                                             | Inadequate reservoir<br>operation (rules not<br>followed)                                          | Could the dam be overtopped/fail during a<br>meteorological event if the operating rules are not<br>followed?                                                                                               | Could a seismic event create a condition<br>that prevents the operating rules from being<br>followed, leading to the dam being<br>overtopped/fail?                                                                | Could the reservoir environment cause<br>the operating rules to not be followed<br>leading to the dam being<br>overtopped/fail?                                                                           | Could human and/or animal activities<br>cause the operating rules to not be<br>followed leading to the dam being<br>overtopped/fail?                                       | Could design or construction of the water<br>barrier cause the operating rules to not be<br>followed and cause the dam to be<br>overtopped/fail?                                   | Could the design or construction of the<br>hydraulic structure cause the operating<br>rules to not be followed and lead to dam<br>collapse by overtopping?                                                                  | Could the design or construction of the<br>mechanical/electrical systems cause the operating rules to<br>not be followed leading to dam overtopping/failure?                                                                                           | Could inadequate infrastructure and plans cause<br>inadequate reservoir operation leading to dam<br>collapse by overtopping?                                                                                               |
|                              | Inadequate available<br>discharge capacity  | Random functional failure<br>on demand                                                             | Could the dam be overtopped/fail during a<br>meteorological event if there is a random functional<br>failure of spilling capability?                                                                        | Could a seismic event cause a random<br>functional failure of spiiling capability<br>leading to the dam be overtopped/failed?                                                                                     | Could the reservoir environment cause<br>random functional failure on demand of<br>discharge capability and lead to the dam<br>being overtopped/fail?                                                     |                                                                                                                                                                            | Could design or construction of the water<br>barrier cause a random functional failure of<br>spilling capability and cause the dam be<br>overtopped/fail?                          | Could the design or construction of the<br>hydraulic structure cause random<br>functional failure of spilling capability and<br>lead to the dam being overtopped/fail due<br>to inadequate available discharge<br>capacity? | Could the design or construction of the mechanical/electrical systems cause a random functional failure on demand leading to dam collapse by overtopping?                                                                                              | Could inadequate infrastructure and plans cause<br>random functional failure on demand leading to<br>dam collapse by overtopping?                                                                                          |
| or overturning)              |                                             | Discharge capability not<br>maintained or retained                                                 | Could the dam be overtopped/fail during a<br>meteorological event if the discharge capacity is not<br>maintained?                                                                                           | Could a seismic event cause the discharge<br>capacity to be damaged causing the dam to<br>be overtopped/fail?                                                                                                     | Could the reservoir environment cause<br>loss of the discharge capability leading to<br>the dam being overtopped/fail?                                                                                    |                                                                                                                                                                            | Could design or construction of the water<br>barrier cause the discharge capability to be<br>not maintained/retained and cause the dam to<br>be overtopped/fail?                   | Could the design or construction of the<br>hydraulic structure cause loss of the<br>discharge capability and lead to the dam<br>being overtopped/fail due to inadequate<br>available discharge capacity?                    | Could the design or construction of the<br>mechanical/electrical systems cause the discharge<br>capability to be not maintained / retained leading to dam<br>collapse by overtopping?                                                                  | Could inadequate infrastructure and plans cause<br>discharge capacity to not be maintained or<br>retained leading to dam collapse by overtopping?                                                                          |
| TOPPING (erosion             | Inadequate freeboard                        | Excessive elevation due to<br>landslide or U/S dam                                                 | Could the dam be overtoppedifail during a<br>meteorological event due to a reservoir landslide or<br>upstream dam failure?                                                                                  |                                                                                                                                                                                                                   | Could the reservoir environment cause<br>excessive elevation of the reservoir<br>leading to the dam being<br>overtopped/fail?                                                                             | Could human and/or animal activities<br>cause a landslide or upstream dam<br>failure leading to the dam being<br>overtopped/fail?                                          | Could design or construction of the water<br>barrier cause a reservoir landslide or<br>upstream dam failure and cause the dam to<br>be overtopped/fail?                            | Could the design or construction of the<br>hydraulic structure cause excessive<br>elevation due to a landslide or upstream<br>dam failure leading to the dam being<br>overtopped/fail due to inadequate<br>freeboard?       | Could the design or construction of the<br>mechanical/electrical systems cause excessive elevation<br>due to landslide or upstream dam failure leading to dam<br>collapse by overtopping?                                                              | Could inadequate infrastructure and/or plans<br>cause the dam to fail due to a reservoir landslide<br>or upstream dam failure?                                                                                             |
| SE BY OVER                   |                                             | Wind-wave dissipation inadequate                                                                   | Is freeboard and wind wave dissipation adequate to<br>prevent overtopping/failure during a meteorological<br>event?                                                                                         | Could a seismic event cause the dam to be<br>overtopped/fail due to inadequate<br>freeboard and wind wave dissipation?                                                                                            | Is freeboard and wind wave dissipation<br>adequate to prevent overtopping/failure<br>from failure of features in the reservoir<br>environment?                                                            | Could human and/or animal activities<br>cause inadequate freeboard and<br>wind wave dissipation leading to<br>dam overtopping/failure?                                     | Could design or construction of the water<br>barrier cause inadequate freeboard and wind<br>wave dissipation and cause<br>overtopping/failure?                                     | Could the design or construction of the<br>hydraulic structure cause inadequate<br>wind-wave dissipation leading to dam<br>collapse by overtopping?                                                                         | Could the design or construction of the mechanical/electrical systems cause inadequate wind-<br>wave dissipation leading to dam collapse by overtopping?                                                                                               | Could inadequate infrastructure and plans cause<br>inadequate wind-wave dissipation leading to dam<br>collapse by overtopping?                                                                                             |
| DAM COLLAPS                  | Safeguards fail to provide timely detection | Operation, maintenance and<br>surveillance fail to<br>detect/prevent hydraulic<br>adequacy         | Could a meteorological event prevent the Dam Safety<br>Engineers activities (based on OMS requirements,<br>see column L) from detecting/prevent hydraulic<br>inadequacy leading to dam overlopping/failure? | Could a seismic event prevent the Dam<br>Safety Engineers activities (based on OMS<br>requirements, see column L) from<br>detecting/preventing hydraulic inadequacy<br>leading to overtopping/failure of the dam? | Could the reservoir environment prevent<br>Dam Safety activities (based on OMS<br>requirements, see column L) from<br>detecting/preventing hydraulic<br>inadequacy leading to dam<br>overtopping/tailure? | Could human and/or animal activities<br>cause the OMS activities to not<br>detect/prevent hydraulic inadequacy<br>leading to dam overtopping/failure?                      | Could inadequate operation, maintenance<br>and surveillance fail to detect / prevent<br>hydraulic adequacy and lead to failure of the<br>water barrier?                            | Could inadequate operation, maintenance<br>and surveillance fail to detect / prevent<br>hydraulic adequacy and lead to failure of<br>the hydraulic structure?                                                               | Could inadequate operation, maintenance and surveillance<br>fail to detect / prevent failure of the mechanical/electrical<br>system leading to dam collapse by overtopping?                                                                            | Could inadequate operation, maintenance and<br>surveillance of the infrastructure and plans cause<br>the OMS activities to not detect /prevent hydraulic<br>inadequacy before leading to overtopping/failure o<br>dam?     |
| akening)<br>Managemer        | and correction                              | Operation, maintenance and<br>surveillance fail to detect<br>poor dam performance                  | Could the meteorological event prevent the OMS<br>rules from being implemented by the DS Engineer<br>leading to dam collapse by loss of strength?                                                           | Could a seismic event cause the OMS<br>rules to not be followed leading to collapse<br>by loss of strength during a seismic event?                                                                                | Could the reservoir environment cause<br>the OMS rules to not be followed leading<br>to dam collapse by loss of strength?                                                                                 | Could human and/or animal activities<br>cause OMS activities to not be<br>followed leading to dam collapse by<br>loss of strength?                                         | and surveillance fail to prevent poor dam                                                                                                                                          | and surveillance of the hydraulic structure                                                                                                                                                                                 | Could inadequate operation, maintenance and surveillance<br>of the mechanical/electrical systems fail to prevent poor<br>dam performance and lead to dam collapse by loss of<br>strength?                                                              | Could inadequate surveillance and management of<br>the infrastructure and plans cause the OMS<br>activities to not detect /prevent dam collapse by<br>loss of strength?                                                    |
| ulure and we                 | Stability under applied                     | Mass movement (external stability:- displacement, tilting, seismic resistance)                     | Could loss of strength and static instability occur<br>during a meteorological event and cause dam<br>collapse?                                                                                             |                                                                                                                                                                                                                   | Could the reservoir environment cause external instability of the dam leading to dam collapse?                                                                                                            | Could human and/or animal activities<br>cause external instability of the dam<br>and cause dam collapse?                                                                   | Could design or construction of the water<br>barrier cause external instability and lead to<br>dam collapse?                                                                       | Could the design or construction of the<br>hydraulic structure cause external<br>instability leading to dam collapse by loss<br>of strength?                                                                                | Could the design or construction of the<br>mechanical/electrical systems cause external instability<br>leading dam collapse by loss of strength?                                                                                                       | Could inadequate infrastructure and plans cause<br>external instability leading to dam collapse by loss<br>of strength?                                                                                                    |
| al structural fa             | loads                                       | Loss of support (foundation<br>or abutment failure)                                                | Could reduction/lack of support in foundation or<br>abutments during a meteorological event cause dam<br>collapse?                                                                                          | Could a seismic event cause reduction/lack<br>of support in foundation or abutments<br>leading to dam collapse?                                                                                                   | Could the reservoir environment (debris,<br>ice, landslides) cause foundation or<br>abutment failure leading to dam<br>collapse?                                                                          | Could human and/or animal activities<br>cause reduction/lack of support in<br>foundation or abutments and cause<br>dam collapse?                                           | Could design or construction of the water<br>barrier cause reduction/lack of support in<br>foundation or abutments and cause dam<br>collapse?                                      | Could the design or construction of the<br>hydraulic structure cause reduction/lack of<br>support in foundation or abutments and<br>lead to dam collapse by loss of strength?                                               | Could the design or construction of the<br>mechanical/electrical systems cause a reduction/lack of<br>support in foundation or abutments leading to dam<br>collapse by loss of strength?                                                               | Could inadequate infrastructure and plans cause reduction/lack of support in foundation or abutments leading to dam collapse by loss of strength?                                                                          |
| xternal orinterna<br>too low |                                             | Seepage around interfaces<br>(abutments, foundation,<br>water stops)                               | Could seepage around<br>interfaces/abutments/foundation during<br>meteorological event reduce watertightness sufficient<br>to cause dam collapse?                                                           | Could a seismic event cause seepage<br>around interfaces / abutments / foundation<br>reduce watertightness sufficient to cause<br>dam collapse?                                                                   | Could the reservoir environment (debris,<br>ice, landslides) cause seepage around<br>interfaces/abutments/foundation and<br>reduce watertightness sufficient to cause<br>dam collapse?                    | seepage around interfaces /<br>abutments / foundation and reduce                                                                                                           | Could design or construction of the water<br>barrier cause seepage around interfaces /<br>abutments / foundation and reduce<br>watertightness sufficient to cause dam<br>collapse? |                                                                                                                                                                                                                             | mechanical/electrical systems cause seepage around                                                                                                                                                                                                     | Could inadequate infrastructure and plans cause<br>seepage around interfaces/ abutments/ foundatior<br>and reduce watertightness sufficient to cause dam<br>collapse by loss of strength?                                  |
| STRENGTH (E                  | Watertightness                              | Through dam seepage<br>control failure (filters, drains,<br>pumps)                                 | Could through -dam seepage (filters/drains/pumps,<br>internal instability) during a meteorological event<br>reduce watertightness and cause dam collapse?                                                   | Could a seismic event cause through dam<br>seepage (filters/drains/pumps) to fail and<br>reduce watertightness and cause dam<br>collapse?                                                                         | Could the reservoir environment<br>(landslides, ice, debris) cause through<br>dam seepage control be lost<br>(filters/drains/pumps) and reduce<br>watertightness and cause dam collapse?                  | Could human and/or animal activities<br>cause failure of through dam<br>seepage (filters / drains / pumps)<br>control and reduce watertightness<br>and cause dam collapse? | Could design or construction of the water<br>barrier cause through dam seepage (filters /<br>drains / pumps) and reduce watertightness<br>and cause dam collapse?                  | Could the design or construction of the<br>hydraulic structure cause through dam<br>seepage control failure (filters/ drains/<br>pumps) and lead to dam collapse by loss<br>of strength?                                    | Could the design or construction of the<br>mechanical/electrical systems cause through dam seepage<br>(filters/ drains/ pumps) and reduce watertightness and<br>cause dam collapse?                                                                    | Could inadequate infrastructure and plans cause<br>through dam seepage (filters/ drains/ pumps) and<br>cause dam collapse by loss of strength?                                                                             |
| PSE BY LOSS OF               | Durability/cracking                         | Structural weakening<br>(internal erosion, AAR,<br>crushing, gradual strength<br>loss)             | Could structural weakening (internal erosion,<br>crushing, cracking, strength loss) causad by a<br>meteorological event cause dam collapse?                                                                 |                                                                                                                                                                                                                   | Could the reservoir environment<br>(landslides, ice, debris) cause internal<br>structural weakening (internal erosion,<br>crushing, cracking, strength loss) and<br>lead to dam collapse?                 | Could human and/or animal activities<br>cause internal structural weakening<br>(internal erosion, crushing, cracking,<br>strength loss) and cause dam<br>collapse?         | Could design or construction of the water<br>barrier cause internal structural weakening<br>(internal erosion, crushing, cracking, strength<br>loss) and cause dam collapse?       | Could the design or construction of the<br>hydraulic structure cause internal<br>structural weakening (internal erosion,<br>crushing, cracking, strength loss) leading<br>to dam collapse?                                  | Could the design or construction of the<br>mechanical/electrical systems cause internal structural<br>weakening (internal erosion, crushing, cracking, strength<br>loss) leading to dam collapse by loss of strength?                                  | Could inadequate infrastructure and plans cause<br>internal structural weakening (internal erosion,<br>crushing, cracking, strength loss) and cause dam<br>collapse by loss of strength?                                   |
| DAM COLLAF                   | Durability of a CKIII g                     | Instantaneous change of<br>state (static liquefaction,<br>hydraulic fracture, seismic<br>cracking) | Could instantaneous change of state occur<br>(Liquefaction, hydraulic fracture) caused by a<br>meteorological event cause dam collapse?                                                                     | Could a seismic event cause instantaneous<br>change of state to occur (Liquefaction,<br>hydraulic fracture) leading to dam collapse?                                                                              | instantaneous change of state to occur                                                                                                                                                                    |                                                                                                                                                                            | Could design or construction of the water<br>barrier cause instantaneous change of state<br>occur (Liquefaction, hydraulic fracture) and<br>cause dam collapse?                    | Could the design or construction of the<br>hydraulic structure cause instantaneous<br>change of state to occur (Liquefaction,<br>hydraulic fracture) leading to dam<br>collapse?                                            | Could the design or construction of the<br>mechanical/electrical systems cause instantaneous<br>change of state to occur (Liquefaction, hydraulic fracture)<br>leading to dam collapse by loss of strength?                                            | Could inadequate infrastructure and plans cause<br>instantaneous change of state occur (Liquefaction,<br>hydraulic fracture) and cause dam collapse by loss<br>of strength?                                                |

## Appendix E

### Dam Stability and Foundation Calculations



Youbou Dam Stability Review L=18.3m r B spillway AN Assume 1 \_ 0.76m - Yw = 9-81 KN/m3 (unit weight water) +2.38m  $H_{av} = 5.7m$ /Length of sliding interface - Ye = 24 KN/m3 (unit weight correctly) Hmay = 8-5m - Y's = 8 kN/m3 (effective unit weight of sitt). ~28m A'L L B' Find Average Sliding Resistance-per M length of dam ⇒ Find average weight per m length of dam crest, L > Find area of sliding interface per m length of dam crest, L K-10.46m Weight of average cross-section, W= 5.7M W=24 × (5.7 × 0.46 + = × 1.5 × 5.7) = 165-5 KN/m Area of sliding interface, As : 2.0m  $A_{s} = 28 \times 2 = 56 m^{2}$ ,  $A_{s} = \frac{56}{18\cdot 3} = 3.06 m^{2}/m$ SECTION A-A' (average cross-section) Average Sliding Resistance, RsL: W 0.76m V flood 1 Voperating RsL=(W+Pasino) tan cS × As 33 i. tand = 0.7 (Table 24.4, CFEM, concrete-to-sound rock Sig interface factor) 80 Silt ф'=22 RsL: [165.5+ 2×0.45×8×(5.7-3-8) × sin(18)]×0.7 × 3.06=358.9 KN/m S=18° DSL = HW + SA, Disturbing force  $\nabla$ 0.46m + 2.3m + Hydrostatic + SECTION B-B (max height)

Project: Youbon Creek Dan DSR Project Number: GK-18-020-CVD Date: 11/05/2018 By: CE

Page: 1 of 5 Checked:



Project:

Project Number: Date:

By:

of 5



$$FLOOD - Case 2 : Dead + IDF hydroxabic + Silt$$

$$\Rightarrow Assume water is ad dam crest$$

$$D_{SL} = \frac{1}{2} \cdot 9.81 \cdot 8.5^{2} + \frac{1}{2} \cdot 0.45 \cdot 8 \cdot (8.5 - 5.5)^{2} \cdot \cos(18^{\circ}) = 370.0 \text{ kN/m}$$

$$FS_{SL} = \frac{358.9}{3700} \approx 1.0 < 1.1 - daes not meet CDA criteria.$$

$$D_{0} = \frac{1}{2} \cdot 9.81 \cdot (8.5)^{3}/3 + \frac{1}{2} \cdot 0.45 \cdot 8 \cdot (8.5 - 5.5)^{3} \cdot \cos(18^{\circ}) \cdot \frac{1}{3} = 1019.7 \text{ kMm/m}$$

$$FS_{0} = \frac{1325.6}{1019.7} = 1.3 > 1.1 \sqrt{0K}.$$

$$EARTHQUAKE - Case 3 : Dead + Operating hydrostabic + Sitt + Seismic load f(A = 0.375) (1/000 AEP)$$

$$Kae = \frac{\cos^{2}(\frac{1}{4} - \theta - a)}{\cos 10 \cos^{2} a \cos((a + 6 + 9))(1 + \sqrt{\sin(46 + 3) \sin(6 - \theta - c)})^{2}}$$

$$\theta = \tan^{-1}(0.375) = 21^{\circ}$$

$$S = 18^{\circ}$$

$$a = 0^{\circ}$$

$$i = 0^{\circ}$$

$$Kae = \frac{\cos^{2}((22 - 21 - 0))}{\cos((a + 18 + 21))(1 + \sqrt{\frac{500}{22}(4 + 11)550}(22 - 41 - 0))^{2}}$$

$$Kae = 1.1$$

$$D_{SL} = \frac{1}{2} \cdot 9.81 \cdot (8.5 - 0.76)^{2} + \frac{1}{2} \cdot 1.1 + 8 \cdot (8.5 - 5.5)^{3} \cos(18^{\circ}) = 331.4 \text{ kN/m}$$

$$FS_{0} = \frac{1325.6}{331.4} = 1.1 > 1.0 \sqrt{0K}$$

$$FS_{0} = \frac{1325.6}{795.7} = 1.7 > 1.0 \sqrt{0K}$$

Project:

Project Number:

Date:



POST-SEISMIC - Case 4 : Dead + Operating hydrostable + Silt + Uplift.  
- Assume a crack has been formed in the foundation and hydrostable prenuve in applied at the base of the concrete dam foundation.  

$$R_{SL} = (W + Pasih - Y_{WHW}, B_{S}^{2}, \frac{1}{2}) tand \cdot A_{S}$$

$$R_{SL} = [15.5 + (\frac{1}{2}, 0.45 \times 8 \times (5.7 - 3.8)^{2} \cdot sin(18^{\circ}) - 9.8] \times (5.7 - 0.76), \frac{9^{2}}{2}] + 0.7 \cdot 3.06$$

$$Y_{WHW} = R_{SL} = 151.3 \text{ kN/m}$$

$$FD_{SL} = R_{SL} = 151.3 \text{ kN/m}$$

$$R_{SL} = 130.5 \text{ kN/m}$$

$$R_{SL} = 130.5 \text{ kN/m}$$

$$R_{S} = 320.6 + 151.3 \times (8.5 - 5.7) = 744.3 \text{ kN/m}/m$$

$$FS_{S} = \frac{R_{S}}{D_{0}} = \frac{744.3}{1305.8} = 0.6 << 1.1$$

$$\frac{Bearing}{D_{0}} = \frac{Capacity}{1305.8} \text{ check}$$
Allowable bearing capacity from Table 9.3 CFEM (2006): 3 m/Pa.  
m/ax. shens applied by gravity wall at dam's more. height:  
W + Pasind = 24(8.5 + 0.46 + \frac{1}{2} \times 8.5 + 2.3) + (\frac{1}{2} \times 0.45 \times 8 \times (8.5 - 5.5)^{2} \sin(18)
$$= 333.4 + \text{KN/m}$$

Project:

Project Number:

Date:



POSITION OF RESULTANT  $e = \frac{M}{V}$ Case 1 : Operational M = Do = 773.7 kNm/m (page 2) V = W + Pa sind = 333.4 KN/m (page 4)  $e = \frac{773.7}{333.4} = 2.32m$ Percentage of base =  $2\cdot32/(2\cdot3+0\cdot46) = \underline{84\cdot1}/.$  - does not meet CDA criteria (outside of middle V3) Case 2 - Flood M = Do = 1019.7 kNm/m  $V = 333.4 \, kN/m$  $e = \frac{1019.7}{332.4} = 3.06 \text{ m}$ Percentage of base = 3.06/(2.3+0.46) = 110.9% - outside of base, does not meet CDA criteria. Case 3: Earthquake M=Do = 795.7 KNm/m  $e = \frac{795.7}{232.4} = 2.39 \text{ m}$ , Percentage of base =  $\frac{2.39}{(2.3+0.46)} = \frac{86.5\%}{1000} - \text{ within base}$ Case 4 Post - Seismic M=Do = 1305.8 KNm/m  $C = \frac{1305 \cdot 8}{333 \cdot 4} = 3.92 \text{ m}$ , Percentage of base =  $\frac{3.92}{(2 \cdot 3 + 0.46)} = \frac{141.9}{\text{doesn't meet criteria}}$ (2-3+0.46) Project: Project Number:

Date:



## Appendix F

Check Sheets for Dam Safety Expectations, Deficiencies and Priorities



#### **Check Sheets for Dam Safety Expectations Deficiencies and Priorities**

Deficiencies and non-conformances identified during the Dam Safety Review have been evaluated in accordance with the sample check sheet for Dam Safety Expectations Deficiencies and Priorities developed by BC MoE (May 2010). Deficiencies are classified into Actual Deficiencies and Potential Deficiencies and there is a variety of non-conformances. These classifications are described as follows.

#### **Definitions of Deficiencies and Non-Conformances**

- 1. Deficiencies
  - a. Actual An unacceptable dam performance condition has been confirmed, based on the CDA Guidelines, or other specified safety standard. Identification of an actual deficiency generally leads to an appropriate corrective action or directly to a capital improvement project:
    - i. (An) Normal Load Load which is expected to occur during the life of a dam.
    - ii. (Au) Unlikely Load Load which could occur under unusual load (large earthquake or flood).
  - Potential There is a reason to expect that an unacceptable condition might exist, but has not been confirmed. Identification of a potential deficiency generally leads to a Deficiency Investigation:
    - i. (Pn) Normal Load Load which is expected to occur during the life of a dam.
    - ii. (Pu) Unlikely Load Load which could occur under unusual load (large earthquake or flood).
    - iii. (Pq) Quick Potential deficiency that cannot be confirmed but can be readily eliminated by a specific action.
    - iv. (Pd) Difficult Potential deficiency that is difficult or impossible to prove or disprove.

#### 2. Non-Conformances

Established procedures, systems and instructions are not being followed, or, they are inadequate or inappropriate and should be revised:

- a. Operational (NCo), Maintenance (NCm), Surveillance (NCs).
- b. Information (NCi) information is insufficient to confirm adequacy of dam or physical infrastructure for dam safety.
- c. Other Procedures (NCp) other procedures, to be specified.

#### Table F2: Dam Safety Expectations for the Youbou Creek Dam

|      |                                                                                                                                                                                                                |     |     |    | Defic  | iencies   | Non-         |                                                                |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|--------|-----------|--------------|----------------------------------------------------------------|
|      | Dam Safety Expectations                                                                                                                                                                                        | Yes | N/A | No | Actual | Potential | Conformances |                                                                |
| 1.0  | Dam Safety Analysis                                                                                                                                                                                            |     |     |    |        |           |              |                                                                |
| 1.1  | Records relevant to dam safety are available including design documents, historical instrument readings, inspection and testing reports, operational records and investigation results.                        |     |     | Х  |        |           | NCi          | No engineering drawings of t<br>operational records are availa |
| 1.2  | Hazards external and internal to the dam have been defined.                                                                                                                                                    | Х   |     |    |        |           |              | Undertaken as part of this DS                                  |
| 1.3  | The potential failure modes for the dam and the initial conditions downstream from the dam have been identified.                                                                                               | х   |     |    |        |           |              | Undertaken as part of this DS                                  |
| 1.4  | Inundation study adequate to determine consequence classification. Flood and "sunny day" scenarios assessed.                                                                                                   | х   |     |    |        |           |              | Undertaken as part of this DS                                  |
| 1.5  | The Dam is classified appropriately in terms of the consequences of failure including life, environmental, cultural and third-party economic losses                                                            | Х   |     |    |        |           |              | Undertaken as part of this DS                                  |
| 1.6  | All other components of the water barrier (retaining walls, saddle dams, spillways, road embankments) are included in the dam safety management process.                                                       | х   |     |    |        |           |              |                                                                |
| 1.7  | The EDGM selected reflects current seismic understanding.                                                                                                                                                      | Х   |     |    |        |           |              |                                                                |
| 1.8  | The IDF is based on appropriate hydrological analyses.                                                                                                                                                         | Х   |     |    |        |           |              |                                                                |
| 1.9  | The dam is safely capable of passing flows as required for all applicable loading conditions (normal, winter, earthquake, and flood).                                                                          |     |     | Х  | An     |           |              | Spillway is undersized and w                                   |
| 1.10 | The dam has adequate freeboard for all applicable operating conditions (normal, winter, earthquake, and flood).                                                                                                |     |     | Х  | An     |           |              | Dam does not have adequate extreme flow events.                |
| 1.11 | The dam safety analyses (stability & hydrological) use current information and standards of practice.                                                                                                          | Х   |     |    |        |           |              |                                                                |
| 1.12 | The approach and exit channels of discharge facilities are adequately protected against erosion and free of any obstructions that could adversely affect the discharge capacity of the facilities.             |     |     | Х  | An     |           |              | Catchment may be susceptib<br>dam may not be adequately p      |
| 1.13 | The dams, abutments and foundations are not subject to unacceptable deformation or overstressing.                                                                                                              | Х   |     |    |        |           |              |                                                                |
| 1.14 | Adequate filter and drainage facilities are provided to intercept and control the maximum anticipated seepage and to prevent internal erosion.                                                                 |     | Х   |    |        |           |              | Dam is constructed out of con                                  |
| 1.15 | Hydraulic gradients in the dams, abutments, foundations and along embedded structures are sufficiently low to prevent piping and instability.                                                                  | х   |     |    |        |           |              |                                                                |
| 1.16 | Slopes of an embankment have adequate protection against erosion, seepage, traffic, frost and burrowing animals                                                                                                |     | Х   |    |        |           |              |                                                                |
| 1.17 | Stability of reservoir slopes are evaluated under all conditions and unacceptable risk to public safety, the dam or its appurtenant structures is identified.                                                  | х   |     |    |        |           |              |                                                                |
| 1.18 | The need for reservoir evacuation or emergency drawdown capability as a dam safety risk control measure has been assessed.                                                                                     | Х   |     |    |        |           |              |                                                                |
| 2.0  | Operation, Maintenance and Surveillance                                                                                                                                                                        |     |     |    |        |           |              |                                                                |
| 2.1  | Responsibilities and authorities are clearly delegated within the organization for all dam safety activities.                                                                                                  |     |     | Х  |        |           | NCo          | An OMS Manual needs to be                                      |
| 2.2  | Requirements for the safe operation, maintenance and surveillance of the dam are documented with sufficient information in accordance with the impacts of operation and the consequences of dam failure.       |     |     | X  |        |           | NCo          | An OMS Manual needs to be                                      |
| 2.3  | The OMS Manual is reviewed and updated periodically: when major changes to the structure, flow control equipment, operating conditions or company organizational structure and responsibilities have occurred. |     |     | х  |        |           | NCo          | An OMS Manual needs to be                                      |
| 2.4  | Documented operating procedures for the dam and flow control equipment under normal, unusual and emergency conditions exist, are consistent with the OMS Manual and are followed.                              |     |     | х  |        |           | NCo          | An OMS Manual needs to be                                      |
|      | Operation                                                                                                                                                                                                      |     |     |    |        |           |              |                                                                |
| 2.5  | Critical discharge facilities are able to operate under all expected conditions.                                                                                                                               |     |     | Х  | Au     |           |              | Low level outlets at the base being overtopped.                |
| a.   | Flow control equipment is tested and is capable of operating as required.                                                                                                                                      | Х   |     |    |        |           |              |                                                                |

#### Comments

f the dam structure were available. Limited inspection and ailable. DSR.

DSR.

DSR.

DSR.

will overtop in extreme flow events.

ate freeboard as the spillway is undersized and will overtop in

tible to development of debris flows and debris floods and thus the y protected.

concrete and thus should not be susceptible to internal erosion.

be prepared for Youbou Creek Dam.

se of the dam will be difficult to access if the dam is spilling or

|      | Dam Safety Expectations                                                                                                                                                                                                                                                                                                                                   | Yes I | N/A N | o<br>Actu | Deficienc<br>ıal F | ies<br>Potential | Non-<br>Conformances | Comments                                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----------|--------------------|------------------|----------------------|--------------------------------------------------------------------------------------|
| b.   | Normal and standby power sources, as well as local and remote controls, are tested.                                                                                                                                                                                                                                                                       |       | Х     |           |                    |                  |                      |                                                                                      |
| C.   | Testing is on a defined schedule and test results are documented and reviewed.                                                                                                                                                                                                                                                                            |       | X     | (         |                    |                  | NCo                  | No official testing records are available.                                           |
| d.   | Management of debris and ice is carried out to ensure operability of discharge facilities.                                                                                                                                                                                                                                                                | Х     | X     | (         |                    |                  |                      |                                                                                      |
| 2.6  | Operating procedures take into account:                                                                                                                                                                                                                                                                                                                   |       |       |           |                    |                  |                      |                                                                                      |
| a.   | Outflow from upstream dams                                                                                                                                                                                                                                                                                                                                |       | Х     |           |                    |                  |                      |                                                                                      |
| b.   | Reservoir levels and rates of drawdown                                                                                                                                                                                                                                                                                                                    |       | ×     | (         |                    |                  | NCo                  | No procedures for drawdown rates are available.                                      |
| с.   | Reservoir control and discharge during an emergency                                                                                                                                                                                                                                                                                                       |       | ×     | (         |                    |                  | NCo                  | No emergency procedures specific to Youbou Creek Dam are available.                  |
| d.   | Reliable flood forecasting information                                                                                                                                                                                                                                                                                                                    | Х     |       |           |                    |                  |                      |                                                                                      |
| e.   | Operator safety                                                                                                                                                                                                                                                                                                                                           |       | ×     | (         |                    |                  | NCo                  | No safe work procedures were available.                                              |
|      | Maintenance                                                                                                                                                                                                                                                                                                                                               |       |       |           |                    |                  |                      |                                                                                      |
| 2.7  | The particular maintenance needs of critical components or subsystems, such as flow control systems, power supply, backup power, civil structures, drainage, public safety and security measures and communications and other infrastructure are identified.                                                                                              |       | ×     | <         |                    |                  | NCm                  | Assumed to be a non-conformance as no supporting documentation provided.             |
| 2.8  | Maintenance procedures are documented and followed to ensure that the dam remains in a safe and operational condition.                                                                                                                                                                                                                                    |       | ×     | <         |                    |                  | NCm                  | Assumed to be a non-conformance as no supporting documentation provided.             |
| 2.9  | Maintenance activities are prioritized and carried out with due consideration to the consequences of failure, public safety and security.                                                                                                                                                                                                                 |       | ×     | <         |                    |                  | NCm                  | Assumed to be a non-conformance as no supporting documentation provided.             |
|      | Surveillance                                                                                                                                                                                                                                                                                                                                              |       |       |           |                    |                  |                      |                                                                                      |
| 2.10 | Documented surveillance procedures for the dam and reservoir are followed to provide early identification and to allow for timely mitigation of conditions that might affect dam safety.                                                                                                                                                                  |       | ×     | <         |                    |                  | NCm                  | Assumed to be a non-conformance as no supporting documentation provided.             |
| 2.11 | The surveillance program provides regular monitoring of dam performance, as follows:                                                                                                                                                                                                                                                                      |       |       |           |                    |                  |                      |                                                                                      |
| a.   | Actual and expected performances are compared to identify deviations.                                                                                                                                                                                                                                                                                     |       | ×     | (         |                    |                  | NCs                  | Comparison of actual conditions to expected conditions documents were not available. |
| b.   | Analysis of changes in performance, deviation from expected performance or the development of hazardous conditions.                                                                                                                                                                                                                                       | X     |       |           |                    |                  |                      |                                                                                      |
| С.   | Reservoir operations are confirmed to be in compliance with dam safety requirements.                                                                                                                                                                                                                                                                      | Х     |       |           |                    |                  |                      |                                                                                      |
| d.   | Confirmation that adequate maintenance is being carried out.                                                                                                                                                                                                                                                                                              |       | ×     | (         |                    |                  | NCs                  | Assumed to be a non-conformance as no supporting documentation provided.             |
| 2.12 | The surveillance program has adequate quality assurance to maintain the integrity of data, inspection information, dam safety recommendations, training and response to unusual conditions.                                                                                                                                                               | x     |       |           |                    |                  |                      |                                                                                      |
| 2.13 | The frequency of inspection and monitoring activities reflects the consequences of failure, dam condition and past performance, rapidity of development of potential failure modes, access constraints due to weather or the season, regulatory requirements and security needs.                                                                          | x     |       |           |                    |                  |                      |                                                                                      |
| 2.14 | Special inspections are undertaken following unusual events (if no unusual events then acknowledge that requirement to do so is documented in OMS).                                                                                                                                                                                                       | х     |       |           |                    |                  |                      |                                                                                      |
| 2.15 | Training is provided so that inspectors understand the importance of their role, the value of good documentation, and the means to carry out their responsibilities effectively.                                                                                                                                                                          |       | ×     | (         |                    |                  | NCs                  | Assumed to be a non-conformance as no supporting documentation provided.             |
| 2.16 | Qualifications and training records of all individuals with responsibilities for dam safety activities are available and maintained.                                                                                                                                                                                                                      |       | ×     | <         |                    |                  | NCs                  | Assumed to be a non-conformance as no supporting documentation provided.             |
| 2.17 | Procedures document how often instruments are read and by whom, where the instrument readings will be stored, how they will be processed, how they will be analyzed, what threshold values or limits are acceptable for triggering follow-up actions, what the follow-up actions should be and what instrument maintenance and calibration are necessary. |       | ×     | <         |                    |                  | NCs                  | Assumed to be a non-conformance as no supporting documentation provided.             |
| 3.0  | Emergency Preparedness                                                                                                                                                                                                                                                                                                                                    |       |       |           |                    |                  |                      |                                                                                      |
| 3.1  | An emergency management process is in place for the dam including emergency response procedures and emergency preparedness plans with a level of detail that is commensurate with the consequences of failure.                                                                                                                                            |       | ×     | <         |                    |                  | NCp                  | A Dam Emergency Plan (DEP) needs to be prepared for Youbou Creek Dam                 |

#### Dam Safety Review and Risk Assessment of Youbou Creek Dam

|      | Dam Safety Expectations                                                                                                                                                                                     | Yes | N/A | No | Defici<br>Actual | encies<br>Potential | Non-<br>Conformances |                                                        |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|------------------|---------------------|----------------------|--------------------------------------------------------|
| 3.2  | The emergency response procedures outline the steps that the operations staff is to follow in the event of an emergency at the dam.                                                                         |     |     | Х  |                  |                     | NCp                  | A Dam Emergency Plan (DE                               |
| 3.3  | Documentation clearly states, in order of priority, the key roles and responsibilities, as well as the required notifications and contact information.                                                      |     |     | X  |                  |                     | NCp                  | A Dam Emergency Plan (DE                               |
| 3.4  | The emergency response procedures cover the full range of flood management planning, normal operating procedures and surveillance procedures.                                                               |     |     | X  |                  |                     | NCp                  | A Dam Emergency Plan (DE                               |
| 3.5  | The emergency management process ensures that effective emergency preparedness procedures are in place for use by external response agencies with responsibilities for public safety within the floodplain. |     |     | х  |                  |                     | NCp                  | A Dam Emergency Plan (DE                               |
| 3.6  | Roles and responsibilities of the dam owner and response agencies are defined.                                                                                                                              |     |     | Х  |                  |                     | NCp                  | A Dam Emergency Plan (DE                               |
| 3.7  | Inundation maps and critical flood information are appropriate and are available to downstream response agencies.                                                                                           |     |     | x  |                  |                     | NCp                  | Inundation maps included in the downstream response as |
| 3.8  | Exercises are carried out regularly to test the emergency procedures.                                                                                                                                       |     |     | Х  |                  |                     | NCp                  | No documentation of training                           |
| 3.9  | Staff are adequately trained in the emergency procedures.                                                                                                                                                   |     |     | Х  |                  |                     | NCp                  | No documentation of training                           |
| 3.10 | Emergency plans are updated regularly and updated pages are distributed to all plan holders in a controlled manner.                                                                                         |     |     | X  |                  |                     | NCp                  | A Dam Emergency Plan (DE                               |
| 4.0  | Dam Safety Review                                                                                                                                                                                           |     |     |    |                  |                     |                      |                                                        |
| 4.1  | A safety review of the dam ("Dam Safety Review") is carried out periodically based on the consequences of failure.                                                                                          | Х   |     |    |                  |                     |                      | The CVRD commissioned th review of this structure.     |
| 5.0  | Dam Safety Management System                                                                                                                                                                                |     |     |    |                  |                     |                      |                                                        |
| 5.1  | The dam safety management system for the dam is in place incorporating:                                                                                                                                     |     |     |    |                  |                     |                      |                                                        |
| a.   | Policies                                                                                                                                                                                                    |     |     | Х  |                  |                     | NCo                  | An OMS Manual needs to b                               |
| b.   | Responsibilities                                                                                                                                                                                            |     |     | Х  |                  |                     | NCo                  | An OMS Manual needs to be                              |
| C.   | Plans and procedures including OMS, public safety and security                                                                                                                                              |     |     | Х  |                  |                     | NCo                  | An OMS Manual needs to be                              |
| d.   | Documentation                                                                                                                                                                                               |     |     | Х  |                  |                     | NCo                  | Documentation of inspection                            |
| e.   | Training and review                                                                                                                                                                                         |     |     | Х  |                  |                     | NCo                  | An OMS Manual needs to be                              |
| f.   | Prioritization and correction of deficiencies and non-conformances                                                                                                                                          | Х   |     |    |                  |                     |                      | Prioritization of deficiencies                         |
| g.   | Supporting infrastructure                                                                                                                                                                                   | Х   |     |    |                  |                     |                      |                                                        |
| 5.2  | Deficiencies are: documented, reviewed, and resolved in a timely manner. Decisions are justified and documented.                                                                                            |     |     | X  |                  |                     | NCo                  | Prioritization of deficiencies                         |
| 5.3  | Applicable regulations are met.                                                                                                                                                                             |     |     | Х  |                  |                     | NCo                  | An OMS Manual & DEP nee                                |

#### Comments

DEP) needs to be prepared for Youbou Creek Dam.

DEP) needs to be prepared for Youbou Creek Dam.

DEP) needs to be prepared for Youbou Creek Dam.

DEP) needs to be prepared for Youbou Creek Dam.

DEP) needs to be prepared for Youbou Creek Dam.

in this report should be incorporated into a DEP and provided to agencies.

ing exercises is available.

ing is available.

DEP) needs to be prepared for Youbou Creek Dam.

this dam safety review. This is the first comprehensive dam safety

be prepared for Youbou Creek Dam.

be prepared for Youbou Creek Dam.

be prepared for Youbou Creek Dam.

ions prior to 2016 are missing, other documentation is limited.

be prepared for Youbou Creek Dam.

es are provided in this dam safety review.

es are provided in this dam safety review.

eeds to be prepared for Youbou Creek Dam.

## Appendix G

### NDMP Risk Assessment Information Template



Sécurité publique Canada Public Safety Canada \*

Ottawa, Canada K1A 0P8

National Disaster Mitigation Program (NDMP) Risk Assessment Information Template

| E          |  |
|------------|--|
| <b>ASS</b> |  |
| С<br>С     |  |
| ž          |  |

| Risk Event Details                    |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       |                                                                 |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Start and End Date                    | Provide the start and end dates of the selected event, based on historical data.                                                                                                                                                                  | Start Date: 05/11/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                            | End Date: Ongoing                                                                                                                                                     | д                                                               |
| Severity of the Risk Event            | <ul> <li>Provide details about the risk, including:</li> <li>Speed of onset and duration of event;</li> <li>Level and type of damaged caused;</li> <li>Insurable and non-insurable losses; and</li> <li>Other details, as appropriate.</li> </ul> | A comprehensive Dam Safety Review and Risk Assessment was undertaken of the<br>Youbou Creek Dam in 2018 to meet the CVRD obligation as a water licensee under the<br>BC Dam Safety Regulations. The dam safety review includes a dam breach analysis, flood<br>routing, inundation mapping and assessment of the performance of the dam structure to<br>resist failure under normal and extreme loads. This includes assessment of various<br>meteorological and seismic hazards. | k Assessment was undertaken<br>D obligation as a water licenser<br>review includes a dam breach a<br>of the performance of the dam<br>. This includes assessment of v | of the<br>ther the<br>inalysis, flood<br>structure to<br>arious |
|                                       |                                                                                                                                                                                                                                                   | Flood routing inundation mapping indicates that hazardous flow conditions downstream of the dam would occur within an hour of the initiation of the dam breach.                                                                                                                                                                                                                                                                                                                   | hat hazardous flow conditions d<br>tiation of the dam breach.                                                                                                         | ownstream of                                                    |
|                                       |                                                                                                                                                                                                                                                   | The results of the dam safety review and risk assessment indicated the following infrastructure is at risk in the event of a dam breach;                                                                                                                                                                                                                                                                                                                                          | assessment indicated the follow<br>reach;                                                                                                                             | ving                                                            |
|                                       |                                                                                                                                                                                                                                                   | <ol> <li>Youbou Road</li> <li>Arbutus Park</li> <li>Youbou Fire Department</li> <li>Other Minor Roads</li> </ol>                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                       |                                                                 |
| Response During the Risk Event        | Provide details on how the defined geographic area continued its essential operations while responding to the event.                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                       |                                                                 |
| Recovery Method for the Risk<br>Event | Provide details on how the defined geographic area recovered.                                                                                                                                                                                     | Recovery is anticipated to include the investigation, design and construction of a replacement dam structure that would meet the performance criteria contain within the BC Dam Safety Regulations, Canadian Dam Association Dam Safety Guidelines and Associated Technical Bulletins.                                                                                                                                                                                            | lation, design and construction<br>he performance criteria contain<br>Association Dam Safety Guideli<br>A                                                             | of a within the<br>res and                                      |

Page 1 of 19

| Recovery Costs Related to the<br>Risk Event | Provide details on the costs, in dollars, associated with implementing recovery strategies following the event. | Dam reconstruction and restoration of roads: \$1,000,000<br>Potential additional costs |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Recovery Time Related to the<br>Risk Event  | Provide details on the recovery time needed to return to normal operations following the event.                 | Unknown                                                                                |

Sécurité publique Canada Public Safety Canada

Ottawa, Canada K1A 0P8

**Risk Assessment Information Template** National Disaster Mitigation Program

UNCLASSIFIED

| Risk Event Identification and Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Provide a qualitative description of the defined geographic area, including:</li> <li>Watershed/community/region name(s);</li> <li>Province/Territory;</li> <li>Province/Territory;</li> <li>Area type (i.e., city, township, watershed, organization, etc.);</li> <li>Population size;</li> <li>Population size;</li> <li>Population variances (e.g., significant change in population between summer and winter months);</li> <li>Main economic areas of interest;</li> <li>Special consideration areas (e.g., historical, cultural and natural resource areas); and an</li> <li>Estimate of the annual operating budget of the area.</li> </ul> | Watershed is the Youbou Creek Watershed<br>Youbou, British Columbia<br>Vancouver Island Region<br>Area type: Youbou Creek watershed<br>Population Size: 1,086<br>Population Variance: Unknown<br>Main Economic Interests: Forestry, Tourism<br>Special Considerations: Arbutus Park<br>Special Considerations: Arbutus Park<br>Estimate of Annual Operating Budget: Unknown |
| Methodolgies, processes and analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analysis completed during the 2018 Comprehensive Dam Safety Review and Risk Assessment of the Youbou Creek Dam, prepared by Ecora Engineering & Resource Group Ltd.                                                                                                                                                                                                         |

Provide the year in which the following processes/analyses were last completed and state the

Report includes: Dam embankment stability analysis, dam breach assessment, dam hydrotechnical

assessment including wind-wave analysis.

Hazards, vulnerability, likelihood, impact, risk are assigned as a result of analysis.

Likelihood assessment; Vulnerability analysis; Hazard identification; methodology(ies) used:

- Impact assessment;
  - Risk assessment;

Resiliency assessment; and/or
Climate change impact and/or adaptation assessment.

Note: It is recognized that many of the processes/analyses mentioned above may be included within one methodology.

Page 3 of 19

| Public Safety         Sécurité publique           Canada         Canada         National I           Ottawa, Canada         Risk Asses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Disaster Mitigation Program<br>ssment Information Template                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hazard Mapping                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>To complete this section:</li> <li>Obtain a map of the area that clearly indicates general land uses, neighbourhoods, landmarks, etc. For clarity throughout this exercise, it may be information from the map intended for use. Controlled photographs (e.g. aerial photography) can be used in place of or in addition to existing m.</li> <li>Place a grid over the maps/photographs of the area and assign row and column identifiers. This will help identify the specific area(s) that may be the characteristics within and affecting the area.</li> <li>Identify where and how flood hazards may affect the defined geographic area.</li> <li>Identify the mapped areas that are most likely to be impacted by the identified flood hazard.</li> <li>Map(s)/photograph(s) can also be used, where appropriate, to visually represent the information/prioritization being provided as part of this template.</li> </ul> | omplete this section:<br>Obtain a map of the area that clearly indicates general land uses, neighbourhoods, landmarks, etc. For clarity throughout this exercise, it may be beneficial to omit any non-essential<br>information from the map intended for use. Controlled photographs (e.g. aerial photography) can be used in place of or in addition to existing maps to avoid the cost of producing new maps.<br>Place a grid over the maps/photographs of the area and assign row and column identifiers. This will help identify the specific area(s) that may be impacted, as well as additional information on<br>the characteristics within and affecting the area.<br>Identify where and how flood hazards may affect the defined geographic area.<br>(s)/photograph(s) can also be used, where appropriate, to visually represent the information being provided as part of this template. |
| Hazard identification and prioritization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| List known or likely flood hazards to the defined geographic area in order of proposed priority.<br>For example: (1) dyke breach overland flooding; (2) urban storm surge flooding ; and so on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ol> <li>Dam breach of Youbou Creek Dam and overland flooding<br/>priority.</li> <li>on.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Provide a rationale for each prioritization and the key information sources supporting the rationale.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The 2018 Comprehensive Dam Safety Review and Risk Assessment of the Youbou Creek Dam           this         Indicated that the dam in its current form does not meet the performance criteria contained within the           BC Dam Safety Regulations, Canadian Dam Association Dam Safety Guidelines and Associated         Zechnical Bulletins and is at risk of structural failure due to internal erosion or a seismic event. 2018           Comprehensive Dam Safety Review and Risk Assessment of the Youbou Creek Dam, prepared by                                                                                                                                                                                                                                                                                                                                                           |
| Risk Event Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ecora Engineering & Resource Group Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Identify the name/title of the risk. An example of a risk event name or title is: "A one-in-one hundred year flood following an extreme rain event."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dam breach and overland flooding due to a one-in-one hundred year flood.<br>one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Type of Flood Hazard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page 4 of 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Canada Carada Carada Carada Carada Carada Carada Carada Ritagation Program Risk Assessment Information Templat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Il Disaster Mitigation Program<br>essment Information Template                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identify the type of flood hazard being described (e.g., riverine flooding, coastal inundation, urban run-off, etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Riverine flooding and associated bank erosion. Failure and over topping of hydraulic structures.                                                                                                                                                                                                                                                                                                                                                                       |
| Secondary hazards<br>Lescribe any secondary effects resulting from the risk event<br>(e.g., flooding that occurs following a hurricane).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Erosion and bank instabilities downstream of the dam failure due to elevated flows. Failure of road embankments where hydraulic structures are overwhelmed by breach flows.                                                                                                                                                                                                                                                                                            |
| Primary and secondary organizations for response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Identify the primary organization(s) with a mandate related to a key element of a natural disaster emergency, and any supporting organization(s) that provide general or specialized assistance in response to a natural disaster emergency.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The Cowichan Valley Regional District and the BC Ministry of Transportation & Infrastructure and<br>Emergency Management BC would be the primary organizations with a mandate to respond to a<br>natural disaster emergency at the subject site.                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Risk Event Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Description of risk event, including risk statement and cause(s) of the event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Provide a baseline description of the risk event, including:</li> <li>Risk statement;</li> <li>Context of the risk event;</li> <li>Souture and scale of the risk event;</li> <li>Nature and scale of the risk event;</li> <li>Lead-up to the risk event, including underlying cause and trigger/stimulus of the risk event;</li> <li>Lead-up to the risk event, including underlying cause and trigger/stimulus of the risk event;</li> <li>Any factors that could affect future events.</li> <li>Any factors that could affect future events.</li> <li>Note: The description entered here must be plausible in that factual information would support such a risk event.</li> </ul> | The primary risk event is the breach of Youbou Creek Dam. This can be caused by a flood event, an earthquake or further deterioration of the concrete structure. In the event of dam breach significant damage to public infrastructure would occur including damage to Youbou Road, Arbutus Park and Youbou Fire Department. The event would most likely occur in the spring freshet period when the lake levels and hydrostatic pressures within the dam are higher. |

| Public Safety Sécurité publique<br>Canada Canada<br>Ottawa. Canada                                                                                                                                                                  | National Disaster Mitigation Program<br>Risk Assessment Information Template | Disaster Mitigation Program<br>ssment Information Template                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location                                                                                                                                                                                                                            |                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>Provide details regarding the area impacted by the risk event such as:</li> <li>Province(s)/territory(ies);</li> <li>Region(s) or watershed(s);</li> <li>Municipality(ies);</li> <li>Community(ies); and so on.</li> </ul> | O ≯ ⊅ ⊠ ≺                                                                    | Youbou Creek is located on the north shore of Cowichan Lake on Vancouver Island on the coast of British Columbia. The Creek passes through the western part of the community of Youbou between Arbutus Park and the Youbou Fire Department.<br>A dam breach has the potential to disrupt transportation traveling between west and east sides of Cowichan Lake. |
| Natural environment considerations                                                                                                                                                                                                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |
| Document relevant physical or environmental characteristics of the defined geographic area.                                                                                                                                         |                                                                              | The Youbou Creek watershed is heavily forested around the creek, logging has taken place in areas<br>close proximity. Elevation of the catchment varies from 164 m near Cowichan Lake to 1110 m at the<br>top of the catchment.                                                                                                                                 |
| Meteorological conditions                                                                                                                                                                                                           |                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |
| Identify the relevant meteorological conditions that may influence the outcome of the risk event.                                                                                                                                   |                                                                              | Relevant meteorological conditions may include:<br>- High snowpack in the Youbou Creek watershed<br>- High temperature as snow thaws<br>- Extreme rainfall<br>- Extreme rain on snow                                                                                                                                                                            |
|                                                                                                                                                                                                                                     |                                                                              |                                                                                                                                                                                                                                                                                                                                                                 |

| Canada Public Safety Sécurité publique Canada Carada Carad | National Disaster Mitigation Program<br>Risk Assessment Information Template                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seasonal conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Identify the relevant seasonal changes that may influence the outcome of the risk assessment of a particular risk event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Relevant seasonal conditions may include:         - Extreme precipitation         - Wood debris in the dam spillway         - Changing watershed conditions due wildfire, logging and other factors                                                                                                                                                                                                                                                                                                                                        |
| Nature and vulnerability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Document key elements related to the affected population, including:</li> <li>Population density;</li> <li>Vulnerable populations (identify these on the hazard map from step 7);</li> <li>Vulnerable population;</li> <li>Key local infrastructure in the defined geographic area;</li> <li>Economic and political considerations; and</li> <li>Other elements, as deemed pertinent to the defined geographic area.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Population density for Youbou: 122.8 people per square km.<br>Hazardous area is identified on hazards maps included with the 2018 Comprehensive Dam Safety<br>Review and Risk Assessment completed by Ecora.<br>Area around creek is mostly rural with development only existing in the lower ranges of the<br>catchment.<br>Key local infrastructure:<br>1. Youbou Road<br>2. Arbutus Park<br>3. Youbou Fire Department<br>4. Other Minor Roads<br>Economic and political considerations: A dam breach will impact local roads and parks. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Public Safety Sécurité publique<br>Canada Canada<br>Ottawa, Canada<br>K1A 0PB                                                                                                                                                        | National Disaster M<br>Risk Assessment Inf | Disaster Mitigation Program<br>ssment Information Template                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>IFIED</u>                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Asset inventory                                                                                                                                                                                                                      |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| Identify the asset inventory of the defined geographic area, including: <ul> <li>Critical assets;</li> <li>Cultural or historical assets;</li> <li>Commercial assets; and</li> </ul>                                                 | 2 <del>1</del> 7                           | Key local assets that are within the flow area include:<br>1. Youbou Road<br>2. Downstream creek crossing below Youbou Creek Dam                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |
| <ul> <li>Other area assets, as applicable to the defined geographic area.<br/>Key asset-related information should also be provided, including:</li> <li>Location on the hazard map (from step 7);</li> <li>Size:</li> </ul>         |                                            | Possible further damage from overland flooding through Youbou. No detailed cost estimate has taken place, however total impact cost is estimated to be below or around \$3 million dollars.                                                                                                                                                                                                                                                                                                                                 | e has taken                                          |
| <ul> <li>Structure replacement cost;</li> <li>Content value;</li> <li>Displacement costs;</li> <li>Importance rating and rationale;</li> <li>Vulnerability rating and reason; and</li> <li>Average daily cost to operate.</li> </ul> |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| A total estimated value of physical assets in the area should also be provided                                                                                                                                                       | ovided.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| Other assumptions, variability and/or relevant information                                                                                                                                                                           |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| Identify any assumptions made in describing the risk event: define details regarding any areas of uncertainty or unpredictability around the risk event; and supply any supplemental information, as applicable.                     |                                            | A breach of the dam could be the result of a number of scenarios and thus it is difficult to say which scenario would be the first that causes dam failure. As per Canadian Dam Association (CDA) guidelines the most conservative scenario was considered. Dam breach analysis assumed a sudden failure of the dam dam during a 100-year inflow event. Some variation between the modeled breach and a real breach may exist due to variation in terrain that may not entirely captured in the digital terrain model used. | say which<br>A)<br>a sudden<br>tid breach<br>digital |
| Existing Risk Treatment Measures                                                                                                                                                                                                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| Identify existing risk treatment measures that are currently in place within the defined geogra area to mitigate the risk event, and describe the sufficiency of these risk treatment measures                                       | . phic                                     | It is anticipated that downstream culverts along Youbou Creek would be at most sized for a 200-year flood event. The inflow from a failure during a extreme event will likely be greater than the actual capacity of the culverts.                                                                                                                                                                                                                                                                                          | a 200-year<br>Ictual                                 |
|                                                                                                                                                                                                                                      |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |

Page 8 of 19

Sécurité publique Canada Public Safety Canada

\*

Ottawa, Canada K1A 0P8

**Risk Assessment Information Template** National Disaster Mitigation Program

UNCLASSIFIED

| Likelihood Assessment                                                                                                   |                                                                                                                                                                                                                            |                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Return Period                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                          |
| Identify the time period during which the ris described is expected to occur once every the X value for the risk event. | Identify the time period during which the risk event might occur. For example, the risk event described is expected to occur once every X number of years. Applicants are asked to provide the X value for the risk event. | 1 in 100-year                                                                                                                                                                            |
| Period of interest                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                          |
| Applicants are asked to determine and ider                                                                              | ntify the likelihood rating (i.e. period of interest) for the r                                                                                                                                                            | Applicants are asked to determine and identify the likelihood rating (i.e. period of interest) for the risk event described by using the likelihood rating scale within the table below. |
| Likelihood Rating                                                                                                       | Definition                                                                                                                                                                                                                 |                                                                                                                                                                                          |
| 5                                                                                                                       | The event is expected and may be triggered by conditions expected over a 30 year period.                                                                                                                                   | tions expected over a 30 year period.                                                                                                                                                    |
| 4                                                                                                                       | The event is expected and may be triggered by conditions expected over a 30 - 50 year period.                                                                                                                              | tions expected over a 30 - 50 year period.                                                                                                                                               |
| 3                                                                                                                       | The event is expected and may be triggered by conditions expected over a 50 - 500 year period.                                                                                                                             | tions expected over a 50 - 500 year period.                                                                                                                                              |
| 2                                                                                                                       | The event is expected and may be triggered by conditions expected over a 500 - 5000 year period.                                                                                                                           | tions expected over a 500 - 5000 year period.                                                                                                                                            |
| -                                                                                                                       | The event is possible and may be triggered by conditions exceeding a period of 5000 years.                                                                                                                                 | ons exceeding a period of 5000 years.                                                                                                                                                    |

Page 9 of 19

Dam does not meet current CDA requirements in terms of sliding failure under static, flood, earthquake or post earthquake and does not meet CDA requirements for overturning under a post-earthquake condition. For the purpose of this study a 1 in 100-year event has been considered. The 1 in 100-year condition was considered as the inflow design flood for the dam corresponds to this event but it is noted that the failure may occur at a lower return period flood.

Provide any other relevant information, notes or comments relating

to the likelihood assessment, as applicable.

2

Sécurité publique Canada Public Safety Canada \*

Ottawa, Canada K1A 0P8

**Risk Assessment Information Template** National Disaster Mitigation Program

# UNCLASSIFIED

| sedneuces |
|-----------|
| oacts/Co  |

There are 12 impacts categories within 5 impact classes rated on a scale of 1 (least impacts) to 5 (greatest impact). Conduct an assessment of the impacts associated with the risk event, and assign

| A) People and societal impacts         | pacts                                                |                                                                                                                                                                                                                                                                           |                         |
|----------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                        | Risk<br>Rating                                       | Definition                                                                                                                                                                                                                                                                | Assigned<br>risk rating |
|                                        | 5                                                    | Could result in more than 50 fatalities                                                                                                                                                                                                                                   |                         |
|                                        | 4                                                    | Could result in 10 - 49 fatalities                                                                                                                                                                                                                                        |                         |
| Fatalities                             | 3                                                    | Could result in 5 - 9 fatalities                                                                                                                                                                                                                                          | 2                       |
|                                        | 2                                                    | Could result in 1 - 4 fatalities                                                                                                                                                                                                                                          |                         |
|                                        | -                                                    | Not likely to result in fatalities                                                                                                                                                                                                                                        |                         |
| Supplemental information<br>(optional) | No permanent populati<br>could result in fatalities. | No permanent population at risk (PAR) was identified within the dam inundation zone, however transient population such as road users would be in the inundation zone that could result in fatalities.                                                                     | ation zone that         |
|                                        | 5                                                    | Injuries, illness and/or psychological disablements cannot be addressed by local, regional, or provincial/territorial healthcare resources; federal support or intervention is required                                                                                   |                         |
|                                        | 4                                                    | Injuries, illnesses and/or psychological disablements cannot be addressed by local or regional healthcare resources; provincial/territorial healthcare support or intervention is required.                                                                               |                         |
| Injuries                               | 3                                                    | Injuries, illnesses and/or psychological disablements cannot be addressed by local or regional healthcare resources additional healthcare support or intervention is required from other regions, and supplementary support could be required from the province/territory | 2                       |
|                                        | 2                                                    | Injuries, illnesses and/or psychological disablements cannot be addressed by local resources through local facilities; healthcare support<br>is required from other areas such as an adjacent area(ies)/municipality(ies) within the region                               |                         |
|                                        | -                                                    | Any injuries, illnesses, and/or psychological disablements can be addressed by local resources through local facilities; available resources can meet the demand for care                                                                                                 | S                       |
| Supplemental information (optional)    | Closest hospi                                        | Closest hospital to impacted area is the Cowichan District Hospital approximately 40 km away.                                                                                                                                                                             |                         |

Page 10 of 19

Risk Assessment Information Template National Disaster Mitigation Program

Sécurité publique Canada

Public Safety Canada

\*

Assigned risk rating Primary impact will be to a temporary population. The duration of displacement could be a number of weeks as road access is restored. Will also take some time for drinking 4  $\sim$ > 75% of flora or fauna impacted or 1 or more ecosystems significantly impaired; Air quality has significantly deteriorated; Water quality is significantly lower than normal or water level is > 3 meters above highest natural level; Soil quality or quantity is significantly lower (i.e., 40 - 74.9% of flora or fauna impacted or 1 or more ecosystems considerably impaired; Air quality has considerably deteriorated; Water quality is considerably lower than normal or water level is 2 - 2.9 meters above highest natural level; Soil quality or quantity is moderately significant soil loss, evidence of lethal soil contamination) than normal; > 15% of local area is affected lower than normal; 10 - 14.9% of local area is affected 10 - 14.9% of total local population 0 - 1.9% of total local population 5 - 9.9% of total local population 2 - 4.9% of total local population 4 weeks - 26 weeks (6 months) > 15% of total local population 72 hours - 168 hours (1 week) > 26 weeks (6 months) Less than 72 hours 1 week - 4 weeks water systems to be restored. Definition Risk Rating  $\sim$ 2  $\sim$ S 4 c 4 З <del>.</del> S 4 Environmental impacts displacement displaced individuals Percentage Duration of Supplemental information (optional) of Ottawa, Canada K1A 0P8 Displacemen B

Page 11 of 19

10 - 39.9% of flora or fauna impacted or 1 1 or more ecosystems moderately impaired; Air quality has moderately deteriorated; Water quality is moderately lower than normal or water level is 1 - 2 meters above highest natural level; Soil quality is moderately lower than normal; 6 - 9.9 % of area affected

c

Sécurité publique Canada Public Safety Canada

\*

National Disaster Mitigation Program

UNCLASSIFIED

Assigned risk rating S < 10 % of flora or fauna impacted or little or no impact to any ecosystems; Little to no impact to air quality and/or soil quality or quantity; Water quality is slightly lower than normal, or water level is less than 0.9 meters above highest natural level and increased for less than 24 Little to no impact to flora or fauna, any ecosystems, air quality, water quality or quantity, or to soil quality or quantity; 0 - 2.9 % of local area is affected Elevated water levels are expected for a period of less than 24 hours as the flood wave moves downstream. **Risk Assessment Information Template** hours; 3 - 5.9 % of local area is affected 10 - 14.9 % of local economy impacted Access to the west along Youbou Road will be restricted. 9.9 % of local economy impacted 5.9 % of local economy impacted 0 - 2.9% of local economy impacted > 15 % of local economy impacted Definition I I 9 c Risk Rating 2  $\sim$ <del>, -</del> 4 З  $\sim$ C) Local economic impacts Supplemental information (optional) Supplemental information (optional) Ottawa, Canada K1A 0P8

Page 12 of 19

National Disaster Mitigation Program Risk Assessment Information Template

Public Safety Sécurité publique Canada Canada

Ottawa, Canada K1A 0P8

| D) Local infrastructure impacts        | acts           |                                                                                                                                                                                                                         |                                                  |
|----------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                                        | Risk<br>Rating | Definition                                                                                                                                                                                                              | Assigned<br>risk rating                          |
|                                        | 5              | Local activity stopped for more than 72 hours; > 20% of local population affected; lost access to local area and/or delivery of crucial service or product; or having an international level impact                     |                                                  |
|                                        | 4              | Local activity stopped for 48 - 71 hours; 10 - 19.9% of local population affected; significantly reduced access to local area and/or delivery of crucial service or product; or having a national level impact          |                                                  |
| Transportation                         | ę              | Local activity stopped for 25 - 47 hours; 5 - 9.9% of local population affected; moderately reduced access to local area and/or delivery of crucial service or product; or having a provincial/territorial level impact | <del>.                                    </del> |
|                                        | 2              | Local activity stopped for 13 - 24 hours; 2 - 4.9% of local population affected; minor reduction in access to local area and/or delivery of crucial service or product; or having a regional level impact               |                                                  |
|                                        | 1              | Local activity stopped for 0 - 12 hours; 0 - 1.9% of local population affected; little to no reduction in access to local area and/or delivery of crucial service or product                                            |                                                  |
| Supplemental information<br>(optional) |                |                                                                                                                                                                                                                         |                                                  |
|                                        | 5              | Duration of impacts > 72 hours; > 20% of local population without service or product; or having an international level impact                                                                                           |                                                  |
|                                        | 4              | Duration of impact 48 - 71 hours; 10 - 19.9% of local population without service or product; or having a national impact                                                                                                |                                                  |
| Energy and Utilities                   | 3              | Duration of impact 25 - 47 hours; 5 - 9.9% of local population without service or product; or having a provincial/territorial level impact                                                                              | 5                                                |
|                                        | 2              | Duration of impact 13 - 24 hours; 2 - 4.9% of local population without service or product; or having a regional level impact                                                                                            |                                                  |
|                                        | -              | Local activity stopped for 0 - 12 hours; 0 - 1.9% of local population affected; little to no reduction in access to local area and/or delivery of crucial service or product                                            |                                                  |
|                                        |                |                                                                                                                                                                                                                         |                                                  |

Page 13 of 19

| Public Safety | Sécurité publique |
|---------------|-------------------|
| Canada        | Canada            |

\*

ne

National Disaster Mitigation Program

UNCLASSIFIED

| Ottawa, Canada<br>K1A 0P8              |   | National Disaster Mitigation Program<br>Risk Assessment Information Template                                                                                                                                                               |   |
|----------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Supplemental information<br>(optional) |   |                                                                                                                                                                                                                                            |   |
|                                        | 5 | Service unavailable for > 72 hours; > 20 % of local population without service; or having an international level impact                                                                                                                    |   |
| Information                            | 4 | Service unavailable for 48 - 71 hours; 10 - 19.9 % of local population without service; or having a national level impact                                                                                                                  |   |
| and<br>Communications                  | 3 | Service unavailable for 25 - 47 hours; 5 - 9.9 % of local population without service; or having a provincial/territorial level impact                                                                                                      | - |
| Technology                             | 2 | Service unavailable for 13 - 24 hours; 2 - 4.9 % of local population without service; or having a regional level impact                                                                                                                    |   |
|                                        | 1 | Service unavailable for 0 - 12 hours; 0 - 1.9 % of local population without service                                                                                                                                                        |   |
| Supplemental information<br>(optional) |   |                                                                                                                                                                                                                                            |   |
|                                        | 5 | Inability to access potable water, food, sanitation services, or healthcare services for > 72 hours; non - essential services cancelled; > 20 % of local population impacted; or having an international level impact                      |   |
|                                        | 4 | Inability to access potable water, food, sanitation services, or healthcare services for 48 - 72 hours; major delays for nonessential services; 10 - 19.9 % of local population impacted; or having a national level impact                |   |
| Health, Food, and Water                | 3 | Inability to access potable water, food, sanitation services, or healthcare services for 25 - 48 hours; moderate delays for nonessential services; 5 - 9.9 % of local population impacted; or having a provincial/territorial level impact | 5 |
|                                        | 2 | Inability to access potable water, food, sanitation services, or healthcare services for 13 - 24 hours; minor delays for nonessential;<br>2 - 4.9 % of local population impacted; or having a regional level impact                        |   |
|                                        | - | Inability to access potable water, food, sanitation services, or healthcare services for 0 - 12 hours; 0 - 1.9 % of local population impacted                                                                                              |   |
|                                        |   |                                                                                                                                                                                                                                            |   |

Page 14 of 19

| Public Safety Sécurité<br>Canada Carada<br>Ottawa, Canada<br>K1A OP8 | Sécurité publique<br>Canada | National Disaster Mitigation Program<br>Risk Assessment Information Template                                                                                                                                                                                                                | UNCLASSIFIED |
|----------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Supplemental information<br>(optional)                               |                             |                                                                                                                                                                                                                                                                                             |              |
|                                                                      | 5                           | > 20 % of local population impacted; loss of intelligence or defence assets or systems for > 72 hours; or having an international level<br>impact 10 - 19.9 % of local population impacted; loss of intelligence or defence assets or systems for 48 - 71 hours; or having a national level |              |
| Safety and Security                                                  | r m                         | <ul> <li>impact</li> <li>9.9 % of local population impacted; loss of intelligence or defence assets or systems for 25 – 47 hours; or having a provincial/territorial level impact</li> </ul>                                                                                                | N            |
|                                                                      | 2                           | 2 - 4.9 % of local population impacted; loss of intelligence or defence assets or systems for 13 – 24 hours; or having a regional level impact                                                                                                                                              |              |
|                                                                      | 1                           | 0 - 1.9 % of local population impacted; loss of intelligence or defence assets or systems for 0 - 12 hours                                                                                                                                                                                  |              |
| Supplemental information<br>(optional)                               |                             |                                                                                                                                                                                                                                                                                             |              |
|                                                                      |                             |                                                                                                                                                                                                                                                                                             |              |

Page 15 of 19

National Disaster Mitigation Program Risk Assessment Information Template

Ottawa, Canada K1A 0P8

Public Safety Sécurité publique Canada Canada

| E) Public sensitivity impacts          | S              |                                                                                                                                                                                                           |                         |
|----------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                        | Risk<br>Rating | Definition                                                                                                                                                                                                | Assigned<br>risk rating |
|                                        | 5              | Sustained, long term loss in reputation/public perception of public institutions and/or sustained, long term loss of trust and confidence in public institutions; or having an international level impact |                         |
|                                        | 4              | Significant loss in reputation/public perception of public institutions and/or significant loss of trust and confidence in public institutions; significant resistance; or having a national level impact |                         |
|                                        | 3              | Some loss in reputation/public perception of public institutions and/or some loss of trust and confidence in public institutions; escalating resistance                                                   | 2                       |
|                                        | 2              | Isolated/minor, recoverable set - back in reputation, public perception, trust, and/or confidence of public institutions                                                                                  |                         |
|                                        | 1              | No impact on reputation, public perception, trust, and/or confidence of public institutions                                                                                                               |                         |
| Supplemental information<br>(optional) |                |                                                                                                                                                                                                           |                         |

| é publique    | a      |
|---------------|--------|
| Sécurit       | Canad  |
| Public Safety | Canada |
| and the       | }-     |

Canada Carada Ottawa, canada K1A 0P8

National Disaster Mitigation Program Risk Assessment Information Template

UNCLASSIFIED

| 7          |
|------------|
| 5          |
| Ξ          |
| - 5        |
| - <b>T</b> |
|            |
| 0          |
| e          |
| ഗ          |
| ം          |
| -          |
| -          |
| Ð          |
| Ō          |
| - <b>-</b> |
| 5          |
|            |
| 0          |
| ÷          |
| <u> </u>   |
| ō          |
| ~~         |
| $\circ$    |

| Based on the table below, in<br>Confidence levels are langué | Based on the table below, indicate the level of confidence regarding the information entered in the risk assessment information template in the "Confidence Level Assigned" column.<br>Confidence levels are language - based and range from A to E (A=most confident to E=least confident).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Assigned" column.         |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Confidence Level                                             | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Confidence Level Assigned |
| 4                                                            | Very high degree of confidence<br>Risk assessment used to inform the risk assessment information template was evidence - based on a thorough knowledge of the<br>natural hazard risk event; leveraged a significant quantity of high - quality data that was quantitative and qualitative in nature;<br>leveraged a wide variety of data and information including from historical records, geospatial and other information sources; and<br>the risk assessment and analysis processes were completed by a multidisciplinary team with subject matter experts (i.e., a wide<br>array of experts and knowledgeable individuals on the specific natural hazard and its consequences)<br>Assessment of impacts considered a significant number of existing/known mitigation measures |                           |
| ۵                                                            | High degree of confidence<br>Risk assessment used to inform the risk assessment information template was evidence - based on a thorough knowledge of the<br>natural hazard risk event; leveraged a significant quantity of data that was quantitative and qualitative in nature; leveraged a wide<br>variety of data and information including from historical records, geospatial and other information sources; and the risk assessment<br>and analysis processes were completed by a multidisciplinary team with some subject matter expertise (i.e., a wide array of<br>experts and knowledgeable individuals on the specific natural hazard and its consequences)<br>Assessment of impacts considered a significant number of potential mitigation measures                   |                           |

Public Safety Sécurité publique Canada Canada

| Ottawa, Canada<br>K1A 0P8                                                                                                   | National Disaster Mitigation Program<br>Risk Assessment Information Template                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| U                                                                                                                           | Moderate confidence<br>Risk assessment used to inform the risk assessment information template was moderately evidence - based from a considerable<br>amount of knowledge of the natural hazard risk event; leveraged a considerable quantity of data that was quantitative and/or<br>qualitative in nature; leveraged a considerable amount of data and information including from historical records, geospatial and<br>other information sources; and the risk assessment and analysis processes were completed by a moderately sized<br>multidisciplinary team, incorporating some subject matter experts (i.e., a wide array of experts and knowledgeable individuals on<br>the specific natural hazard and its consequences)<br>Assessment of impacts considered a large number of potential mitigation measures                      |                                                         |
|                                                                                                                             | Low confidence<br>Risk assessment used to inform the risk assessment information template was based on a relatively small amount of knowledge of<br>the natural hazard risk event; leveraged a relatively small quantity of quantitative and/or qualitative data that was largely historical<br>in nature; may have leveraged some geospatial information or information from other sources (i.e., databases, key risk and<br>resilience methodologies); and the risk assessment and analysis processes were completed by a small team that may or may not<br>have incorporated subject matter experts (i.e., did not include a wide array of experts and knowledgeable individuals on the<br>specific natural hazard and its consequences).<br>Assessment of impacts considered a relatively small number of potential mitigation measures | U                                                       |
| ш                                                                                                                           | Very low confidence<br>Risk assessment used to inform the risk assessment information template was not evidence - based; leveraged a small quantity of<br>information and/or data relating to the natural risk hazard and risk event; primary qualitative information used with little to no<br>quantitative data or information; and the risk assessment and analysis processes were completed by an individual or small group<br>of individuals little subject matter expertise (i.e., did not include a wide array of experts and knowledgeable individuals on the<br>specific natural hazard and its consequences).<br>Assessment of impacts did not consider existing or potential mitigation measures                                                                                                                                 |                                                         |
| Rationale for level of confidence                                                                                           | onfidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |
| Provide the rationale for the selected confidence level, including any references or sources to support the level assigned. | The risk assessment considered multiple risk events including the probabilistic (5th Generation) seismic hazard model developed by the Geological<br>Survey of Canada (GSC) (Halchuk, Adams and Allen, 2015) that forms the basis of the seismic design provisions of the 2015 National Building Code of<br>Canada (NBCC, 2015). Only one mitigation measure was considered as rehabilitation of the existing dam structure is the most logical option.<br>avel assigned.                                                                                                                                                                                                                                                                                                                                                                   | / the Geological<br>nal Building Code of<br>cal option. |

Page 18 of 19

| Key Information Sources       Comprehensive Dam Safety Review and Risk Assessment of Youbound and information sources for gualitative and quantitative data used to identify risk events. develop the risk events. develop the risk event description, and assess impacts and likelihood. This events description, and assess impacts and welding of risk information presented as well as events. develop the risk event description, and assess impacts and welding of risk information presented as well as enables referencing back to decision points at any point in time.       Unclassified.         Clearly identify unclassified and classified information.       Unclassified.       Inclassified.         Description of the risk analysis team       Michael J. Laws. P. Eng. Senior Hydrotechnical & Dam Safety Engineer Dividual who was involved with the completion of the risk assessment information.       Dr. Actian Chanter, P. Eng. Senior Hydrotechnical Engineer Contained within this risk assessment information. | National Disaster Mitigation Program<br>Risk Assessment Information Template                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comprehensive Dam Safety Review and Risk Assessment of Youbou Creek Dam, prepared by Ecora Engineering & Resource<br>Group Ltd. in draft from 2018. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rs, P.Eng. Senior Geotechnical & Dam Safety Engineer<br>Intler, P.Eng. Senior Hydrotechnical Engineer                                               |

# Appendix H

### Dam Safety Assurance Statement



## APPENDIX C1: DAM SAFETY REVIEW ASSURANCE STATEMENT – WATER RESERVOIR DAMS

Note: This statement is to be read and completed in conjunction with the current APEGBC Professional Practice Guidelines – Legislated Dam Safety Reviews in British Columbia, ("APEGBC Guidelines") and is to be provided for dam safety review reports for the purposes of the Dam Safety Regulation, BC Reg. 40/2016 as amended. Italicized words are defined in the APEGBC Guidelines.

| To: The | e Owner(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date: | March 19, 2019 |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|
| Cow     | ichan Valley Regional District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                |
| Name    | 175 Ingram Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                |
|         | Duncan, BC V9L 1N8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                |
| Addres  | is a second seco |       |                |
| With re | eference to the Dam Safety Regulation, B.C. Reg. 40/2016 as amended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                |
| For the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |
|         | UTM (Location):E410956, N5414653 (Zone 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                |
|         | Located at (Description): Near Community Lane, Youbou, BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                |
|         | Name of dam or description: Youbou Creek Dam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                |
|         | Provincial dam number: D730170-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                |
|         | Dam function: Township water supply for Youbou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                |
|         | Owned by: Cowichan Valley Regional District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |
|         | (the "Dam")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |                |

Current Dam classification is:

Check one

Low
Significant
High
Very High
Extreme

The undersigned hereby gives assurance that he/she is a Qualified Professional Engineer.

I have signed, sealed and dated the attached dam safety review report on the Dam in accordance with the APEGBC Guidelines. That report must be read in conjunction with this Statement. In preparing that report I have:

Check to the left of applicable items (see Guideline Section 3.2):

.

| $\checkmark$ | 1.   | Collected and reviewed available and relevant background information, documentation and data                                                                     |
|--------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\checkmark$ | 2.   | Understood the current classification for the Dam, including performance expectations                                                                            |
| $\checkmark$ | 3.   | Undertaken an initial facility review                                                                                                                            |
| $\checkmark$ | 4.   | Reviewed and assessed the Dam safety management obligations and procedures                                                                                       |
| $\checkmark$ | 5.   | Reviewed the condition of the Dam, reservoir and relevant upstream and downstream portions of the river                                                          |
| $\checkmark$ | 6.   | Interviewed operations and maintenance personnel                                                                                                                 |
| $\checkmark$ | 7.   | Reviewed available maintenance records, the Operations, Maintenance and Surveillance (OMS) Manual and the Dam Emergency Plan                                     |
| $\checkmark$ | 8.   | Confirmed proper functioning of flow control equipment                                                                                                           |
| $\checkmark$ | 9.   | After the above, reassess the consequence classification, including the identification of required dam safety criteria                                           |
| $\checkmark$ | 10   | . Carried out a dam safety analysis based on the classification in 9. above                                                                                      |
| $\checkmark$ | 11.  | Evaluated facility performance                                                                                                                                   |
| $\checkmark$ | 12   | . Identified, characterized and determined the severity of deficiencies in the safe operation of the Dam<br>and non-conformances in dam safety management system |
| $\checkmark$ | 13   | . Recommended and prioritized actions to be taken in relation to deficiencies and non-conformances                                                               |
| $\checkmark$ | 14   | . Prepared a dam safety review report for submittal to the regulatory authority by the Owner and reviewed the report with the Owner                              |
| $\checkmark$ | 15   | . The dam safety review report has been reviewed in meeting the intent of APEGBC Bylaw 14(b)(2)                                                                  |
| Base         | d on | my dam safety review, the current dam classification is:                                                                                                         |
| Chec         | ck o | ne                                                                                                                                                               |
| Ap           | opro | priate                                                                                                                                                           |
| □ Sł         | noul | d be reviewed and amended                                                                                                                                        |

I undertook the following type of dam safety review:

#### Check one

🗆 Audit

Comprehensive

 $\Box$  Detailed design-based multi-disciplinary

 $\hfill\square$  Comprehensive, detailed design and performance

I hereby give my assurance that, based on the attached dam safety review report, at this point in time:

#### **Check one**

- □ The Dam is reasonably safe in that the dam safety review did not reveal any unsafe or unacceptable conditions in relation to the design, construction, maintenance and operation of the Dam as set out in the attached dam safety review report
- □ The Dam is reasonably safe but the dam safety review did reveal non-conformances with the Dam Safety Regulation as set out in section(s) \_\_\_\_\_ of the attached dam safety review report.
- □ The Dam is reasonably safe but the dam safety review did reveal deficiencies and non-conformances as set out in section(s) \_\_\_\_\_ of the attached dam safety review report.

The Dam is not safe in that the dam safety review did reveal deficiencies and/or non-conformances which require urgent action as set out in section(s) \_\_\_\_\_ of the attached dam safety review report. 10.5, 12 & 13

Michael J. Law P.Eng March 19, 2019 Name Date S. Signatu 579 Lawrence Avenue, Kelowna, BC V1Y 6L8 Address 250.469.9757 Telephone (Affix Professional Seal here)

If the Qualified Professional Engineer is a member of a firm, complete the following:

I am a member of the firm Ecora Engineering & Resource Group Ltd. and I sign this letter on behalf of the firm. (Print name of firm)

# Appendix I

## Statement of General Conditions – Geotechnical





#### **Standard of Care**

Ecora Engineering and Resource Group Ltd. (Ecora) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

#### Basis and Use of the Report

This report and the recommendations contained in it are intended for the sole use of Ecora's Client. Ecora does not accept any responsibility for the accuracy of any of the data, the analyses or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than Ecora's Client unless otherwise authorized in writing by Ecora. Any unauthorized use of the report is at the sole risk of the user. In order to properly understand the suggestions, recommendations and opinions expressed herein, reference must be made to the whole of the report. We cannot be responsible for use by any party of portions of the report without reference to the whole report.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of Ecora. Additional copies of the report, if required, may be obtained upon request.

#### **Alternate Report Format**

Where Ecora submits both electronic file and hard copy versions of reports, drawings and other project-related documents, only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by Ecora shall be deemed to be the original for the Project. Both electronic file and hard copy versions of Ecora's deliverables shall not, under any circumstances, no matter who owns or uses them, be altered by any party except Ecora.

#### Soil, Rock and Groundwater Conditions

Classification and identification of soils, rocks and geological units have been based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Ecora does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities such as traffic, excavation, groundwater level lowering, pile driving, blasting on the site or on adjacent sites. Excavation may expose the soils to climatic elements such as freeze/thaw and wet /dry cycles and/or mechanical disturbance which can cause severe deterioration. Unless otherwise indicated the soil must be protected from these changes during construction.

#### **Environmental and Regulatory Issues**

The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

#### Sample Disposal

Ecora will dispose all soil and rock samples for 30 days following issue of this report. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.



#### **Construction Services**

During construction, Ecora should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Ecora's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Ecora's report. Adequate field review, observation and testing during construction are necessary for Ecora to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Ecora's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

#### **Job Site Safety**

Ecora is responsible only for the activities of our employees on the jobsite. The presence of Ecora's personnel on the site shall not be construed in any way to relieve the Client or any contractors on site from their responsibilities for site safety. The Client acknowledges that he, his representatives, contractors or others retain control of the site and that Ecora never occupy a position of control of the site. The Client undertakes to inform Ecora of all hazardous conditions, or other relevant conditions of which the Client is aware. The Client also recognizes that our activities may uncover previously unknown hazardous conditions or materials and that such a discovery may result in the necessity to undertake emergency procedures to protect our employees as well as the public at large and the environment in general.

#### **Changed Conditions and Drainage**

Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Ecora be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Ecora be employed to visit the site with sufficient frequency to detect if conditions have changed significantly. Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Ecora takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.

#### Services of Sub consultants and Contractors

The conduct of engineering and environmental studies frequently requires hiring the services of individuals and companies with special expertise and/or services which we do not provide. Ecora may arrange the hiring of these services as a convenience to our Clients. As these services are for the Client's benefit, the Client agrees to hold the Company harmless and to indemnify and defend Ecora from and against all claims arising through such hiring's to the extent that the Client would incur had he hired those services directly. This includes responsibility for payment for services rendered and pursuit of damages for errors, omissions or negligence by those parties in carrying out their work. In particular, these conditions apply to the use of drilling, excavation and laboratory testing services.