

Watershed Model Background

Goal #1: Support the development of a watershed management plan

Establish the current ecological and hydrological function and use this information to:

- understand how much development can be supported in the watershed
- protect freshwater areas from degradation and contamination

Goal #2: Test the use of automated mapping to identify key ecological areas and surface water resources

Goal #3: Understand the connections between ecological function and water resource protection

Watershed Model Workplan

- 1. Assemble existing data
 - a) high-resolution LiDAR

- 1. Assemble existing data
 - b) Ecosystem mapping; and
 - c) Land-use data

 Generate derivative products for topography, vegetation, ecosystems, and hydrology

- 3. "Ground truth" mapping with help of the Cowichan Land Trust (and you!)
- 4. Analyze data to produce maps of ecosystems, water features, green infrastructure, and zones of impact on water resources

5. Integrate results in a web-based mapping and analysis tool

Field validation

Field Validation

Approach

- Train volunteer stewards
- •Identified and validated key sites (>100)
- Completed fieldwork Mar 1st-13th

Additional Outcomes

- Community mapping process
- Build stewardship awareness

Watershed Model Results

Yellow Point – Cedar study area

Elevation

Human footprint and intact ecosystems

Xeric (dry) ecosystems

Wetland ecosystems

Areas of interactions of groundwater and surface water

Areas of increased human use and runoff

Potential groundwater quality impact areas

Areas of reduced groundwater recharge

Areas of increased water use

Areas of water supply sensitivity

Maximum vegetation height

Mean vegetation height by lot/parcel

Solar potential

Next Steps

Questions and Comments

